无线通信技术的飞速发展极大地推动了卫星通信的发展。卫星通信具有信息传输范围广、支持多个接收机同时通信等优势。随着卫星通信技术的不断进步,人们对更高传输速度和更宽频段的需求不断增加,这增加了人们对毫米波频谱中 Ka 波段频率的兴趣。与低频段相比,Ka 波段的数据传输速率更快,而且由于其超高频特性,也易于实现超低延迟。然而,大多数 K/Ka 波段卫星距离地面终端约 35,000 公里,距离和大气条件会导致信号衰减很大。
技术规格:先进的相控阵天线技术:终端配备相控阵天线,可实现动态波束控制,即使在恶劣条件下也能确保高质量连接。高吞吐量:Aurora 提供高数据吞吐量,这对于传输大量信息(包括高清视频、数据流和其他高级应用)至关重要。节能:终端设计为消耗最少的电量,这对于偏远地区的长期运行非常重要。
我们演示了一个由传感器、应用程序和云基础设施组成的多光谱成像平台“超成像仪”。传感器包括 60GHz 的 3D 雷达系统、红外和可见域信息。该系统能够捕获可以利用每个域优势的多光谱图像。我们还演示了使用 IBM 软件定义相控阵无线电 (SDPAR) 的联合通信和 3D 传感应用。SDPAR 使用最先进的 28GHz 64 元件相控阵与 SDR 和通用 API 结合使用,以简化使用相控阵的应用程序的系统开发。通过使用已用于通信的 OFDM 波形进行飞行时间测量,可以实现 3D 传感。通过跨时间拼接 100MHz 宽的数据包,可以获得总共 1GHz 的传感带宽。这种联合传感通信不会影响底层通信带宽。
1.军用雷达:作战系统主要视频传感器 根据扫描控制方式不同,雷达站可分为机械扫描雷达、电子扫描雷达、频率扫描雷达、相控阵雷达(相控阵雷达)和合成孔径雷达(特别行政区)。雷达作为现代战争作战系统的主要视频传感器,负责对目标进行全天候精确侦察和实时监控;探测和跟踪可能对军事基础设施造成严重损害的武器,例如弹道导弹和巡航导弹;各种隐藏目标的检测和识别;确定失败的结果并识别目标、导弹制导和武器火力控制。2.世界军用雷达发展趋势:技术多元化、市场稳定、产业集中 雷达技术正处于发展中期阶段。整个中间阶段是基于相控阵雷达、合成孔径雷达和脉冲多普勒雷达三个主要系统的起源、发展、完善、集成和智能化。雷达的发展包括三个方向——载体和系统的多样化以及宽频率范围(其扩展)。关于载体(安装地点),随着雷达技术向小型化、集成化方向发展,雷达的使用不再局限于地面、机载和舰载载体,而是越来越多地应用于无人机和卫星;说到波段,随着新波段(如毫米波雷达)的发现,雷达的波长不断扩大。纵观整个雷达系统,传统的脉冲多普勒雷达(PD - Pulse-Doppler)机械扫描模式正逐渐淡出背景,取而代之的是相控电子扫描阵列雷达和合成孔径雷达(SAR)。将成为主要发展方向。雷达系统最终将统一为一个网络,其特征还包括:多功能集成、数字化和分布式。短期内,雷达发展的重点将是天线技术、成像技术和射程扩展,即相控阵雷达、SA雷达和毫米波雷达。
林肯实验室正在开发一种结合氮化镓 (GaN) 和硅互补金属氧化物半导体 (Si CMOS) 器件的技术,以便为先进的相控阵系统提供更高效的 HPA 和高度集成的发射器/接收器 (T/R) 模块。由于 GaN 的宽带隙,在 Si 衬底上生长的 GaN 器件可提供高输出功率、高效率和宽带宽。使用 CMOS 器件可以集成额外的高密度和节能的 T/R 硬件组件,例如移相器、模数转换器和数模转换器以及数字控制器。将这些组件集成在单个集成电路上可大大降低相控阵系统的成本,并实现电路技术,例如用于在宽带宽上提高功率放大器效率的技术,这些技术在其他情况下可能无法实现。