本文提出了一个用于生成布局设计的图像矢量双扩散模型。与先前的努力不同,主要忽略了元素和整个画布的视觉信息,我们的方法将预先训练的大图扩散模型的力量集成了通过增强的明显区域的理解和高级元素间关系推理来指导矢量扩散模型中的布局组成。我们提出的模型同时在两个域中运行:它在图像do-main中的总体设计外观进行了优化,同时优化了向量域中每个demign元素的大小和位置。所提出的方法在几个数据集上实现了最新结果,并启用了新的布局设计应用程序。项目网页:https://aminshabani.github.io/Visual Layout Composer。
在结构化光的领域,光学涡旋及其矢量扩展(矢量涡流束)的研究因其独特的相位和极化特性而引起了很大的兴趣,这使它们对许多潜在应用有吸引力。结合了涡流束和各向异性材料的优势,可以在非线性光学,量子和拓扑光子学中实现电磁场剪裁和操纵的独特可能性。这些应用程序需要一个全面的建模框架,该框架构成了各向异性材料和矢量涡流梁的属性。在本文中,我们描述了一个半分析模型,该模型将矢量衍射理论扩展到通过单轴平板传播的聚焦涡流梁的情况,考虑到标量和矢量涡流的情况下,在laguerre-gaussian模式基础的共同框架中。该模型旨在提供对方法的全面描述,从而实现复杂的光束传输,从单轴各向异性材料中进行特定应用中的单轴各向异性材料的反射和传播。作为其多功能性的演示,我们采用了开发的方法来描述具有各种分散特征的单轴材料中高阶涡流束的传播,探索椭圆形,双曲线和epsilon-near-near-Zero机制。我们展示了培养基各向异性的变化如何因其相互作用的矢量性质而改变束结构,这是由于介质的不同介电性用于横向和纵向场的组件。如果可以通过有效的培养基参数描述,则该方法的适用性可以扩展到人工结构化的介质。开发的形式主义将有助于对复杂梁与单轴材料的相互作用进行建模,从而为多种情况提供了共同的框架,这也可以扩展到电磁波之外。
夜间摄影经常在低光和模糊之类的挑战中挣扎,源于黑暗的环境和长时间的暴露。当前方法要么无视Pri-ors,直接拟合端到端网络,导致不稳定的照明,要么依靠不可靠的手工制作的先验来限制网络,从而为最终结果带来了更大的错误。我们相信,数据驱动的高质量先验的力量,并努力在事先提供可靠和同意的情况下,规避了手动先验的限制。在本文中,我们提出了使用矢量量化的代码书(VQCNIR)更清晰的夜间图像修复,以实现对现实世界和合成基准测试的重新恢复结果。为了确保忠实地恢复细节和照明,我们提出了两个基本模块的合并:自适应照明增强仪(AIEM)和可变形的双向交叉注意(DBCA)模块。AIEM利用了功能与动态照明功能和高质量代码簿功能之间的一致性的通道间相关性。同时,DBCA模拟通过双向交叉注意和可变形的会议有效地整合了纹理和结构信息,从而增强了平行解码器之间的细粒细节和结构性保真度。广泛的实验验证了VQCNIR在弱光条件下增强图像质量的显着好处,展示了其在合成和实际数据集中的最新性能。该代码可在https://github.com/alexzou14/vqcnir上找到。
1美国北安普敦史密斯学院生物科学系,美国美国,美国2号生物科学系,昆尼皮亚西亚三世大学,昆尼皮亚克大学,汉姆登,康涅狄格州,美国康涅狄格州,美国寄生疾病3实验室,美国国家医学院,美国伯兰群岛,美国,美国,美国,美国,美国,美国,美国,美国,美国,美国,美国,美国,美国,美国,美国。 Missouri, United States of America, 5 Laboratory of Molecular Parasitology, Lindsley F. Kimball Research Institute, New York Blood Center, New York, New York, United States of America, 6 Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany, 7 German Center for Infection Research (DZIF), Partner-Site Bonn-Cologne, Bonn, Germany, 8 Center for Global Health Infectious Disease Research, University of South Florida, Tampa, Florida, United States of America, 9 Parasite and Vectors Research Unit, Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon, 10 Research Foundation in Tropical Diseases and the Environment, Buea, Cameroon, 11 NTD-SC, Task Force for Global Health, Atlanta, Georgia, United States of America, 12 RLMF, The END Fund, New York, New美国,美国,美国马萨诸塞州阿默斯特大学,美国马萨诸塞州阿默斯特大学的13分子和蜂窝生物学计划
。cc-by 4.0国际许可(未经Peer Review尚未获得认证)是作者/资助者,他已授予Biorxiv的许可证,以永久显示预印本。它是制作
在本文中,我们介绍分区商lter(PQF)。它的设计类似于向量商lter和pre x(商)lter(最终都是基于商lter)的设计。与Pre X Ler类似,它使用两级层次结构来存储商:大多数密钥都发送到Frontyard,而Over Ows则进入后院。在frontyard中,只有一个存储桶(缓存线)可以在其中最终出现,这是导致其他动态lter设计的性能提高,这些设计必须访问每个操作的两个缓存线。键使用两种选择机制(类似于向量商lter)发送到后院,并且使我们能够支持删除的创新是后院位置纯粹依赖于前院位置,而没有重新进行商的重新进行。
描述PGBKT7是一种酵母表达载体,旨在表达GAL4 DNA结合结构域(DNA-BD;氨基酸1-147)和诱饵蛋白的融合蛋白。融合蛋白来自培养基ADH1启动子的高水平表达。融合蛋白还包含一个C-MYC表位标签。为了促进体外转录/翻译,PGBKT7包括GAL4 DNA-BD和表位标签之间的T7启动子。
摘要。相位模型(例如Allen-CaHn方程)可能会引起几何形状的形成和演变,这种现象可以在适当的缩放方案中进行严格分析。在其尖锐的界限限制下,已经猜想了具有n 3不同最小值的电势的矢量allen-cahn方程,以通过多相平均曲率流量来描述分支接口的演变。在目前的工作中,我们在两个和三个环境维度和适当的一类潜在的情况下给出了严格的证据:只要存在多态度平均曲率流的强大解决方案,就可以解决矢量allen-cahn方程,并具有良好的初始数据汇总到多型固定固定构型固定端口的限制范围内的范围范围范围的弯曲范围范围范围的范围,我们甚至建立了收敛速度。”1 = 2 /。我们的方法基于Allen-Cahn方程的梯度流结构及其限制运动:基于用于多相平均曲率流的最新概念“梯度流校准”的概念,我们引入了矢量allen – Cahn方程的相对熵的概念。这使我们能够克服其他方法的局限性,例如避免需要对艾伦 - 卡纳操作员进行稳定性分析,或在积极时为能量的其他收敛假设。
手稿版本:作者接受的手稿包装中呈现的版本是作者接受的手稿,可能与已发布的版本或记录的版本有所不同。持续的包裹网址:http://wrap.warwick.ac.uk/182876如何引用:有关最新的书目引用信息,请参阅发布版本。如果已知已发布的版本,则链接到上面的存储库项目页面将包含有关访问它的详细信息。版权所有和重复使用:沃里克研究档案门户(WARAP)使沃里克大学的研究人员在以下条件下可用开放访问权限。版权所有©以及此处介绍的论文版本的所有道德权利属于单个作者和/或其他版权所有者。在合理且可行的范围内,已在可用的情况下检查了包装中可用的材料是否有资格。未经事先许可或收费,可以将完整项目的副本用于个人研究或研究,教育或非营利目的。前提是作者,标题和完整的书目细节被认为是针对原始元数据页面提供的超链接和/或URL,并且内容不会以任何方式更改。发布者的声明:请参阅“存储库”页面,发布者的语句部分,以获取更多信息。有关更多信息,请通过以下网络与WARP团队联系:wrap@warwick.ac.uk。