镍基高温合金一直在满足燃气轮机对高温材料的需求,以提高工作温度 (T) 并实现更高的效率 [1]。然而,要进一步突破燃气轮机在 T > 1600 C 下的运行极限,就需要发现和开发除相当昂贵的镍基高温合金之外的新型合金。最近对合金探索的兴趣促使人们偏离传统的合金化策略,探索相图中心,从而产生了一种新的合金,即多主元合金 (MPEA) [2]。与沉淀强化合金相比,MPEA 具有单相/双相固溶体(由多种组成元素的比例相当导致的相对“更高”的混合熵驱动),这些固溶体在较高温度下稳定,即使在升高的 T 下也能保持优异的机械、腐蚀和热性能 [2e18]。 MPEA 可用的成分范围非常广泛,而且人们对使用计算和机器学习技术加速合金发现的兴趣日益浓厚,这促进了具有目标特性的 MPEA 的高通量设计研究[8、9、11、12、15、17、19 e 22]。尽管如此,在实验室规模上对这些成分的预测相 / 特性的验证通常仅限于电弧熔炼 [23、24]、机械合金化、放电等离子烧结 [25] 和薄膜沉积 [26]。基于激光沉积的增材制造 (AM) 技术的进步为高通量合成 MPEA 提供了机会,它提高了可扩展性,可以将合金和组件设计结合起来,以获得应用驱动的材料特性 [27 e 36]。然而,AM 的优势有时会被制造方面的挑战所取代,包括材料中的孔隙率
用于半分割的大多数现有知识蒸馏方法着重于从原始特征中提取各种复杂知识。但是,这种知识通常是手动设计的,并且像传统功能工程一样依赖于先前的知识。在本文中,我们旨在提出一种使用RAW功能的简单有效的功能蒸馏方法。为此,我们重新审视了功能蒸馏中的开创性工作,Fitnets可以将平方误差(MSE)损失(MSE)损失最小化。我们的实验表明,在某些情况下,这种幼稚的方法可以产生良好的结果,甚至超过了一些精心设计的方法。但是,它需要仔细调整蒸馏损失的重量。通过将fitnets的损失函数分解为差异项和角度差项,我们发现角度差异项的重量受教师特征和学生特征的幅度的影响。我们通过实验表明,角度差异项在特征蒸馏中起着至关重要的作用,而不同模型产生的特征的大小可能会有很大变化。因此,很难确定各种模型的适合减肥体重。为了避免角度蒸馏术语的重量受到特征的影响,我们提出了角度蒸馏,并探索沿不同效率尺寸的蒸馏角度信息,以进行语义分割。广泛的例子表明,我们的简单方法对超级参数表现出极大的效果,并实现了语义细分的最先进的蒸馏性能。
摘要 哥德堡数字人文研究基础设施 (GRIDH) 参与了各个人文领域的项目,这些项目利用并开发了结合“人工智能” (AI) 应用的研究工具和基础设施资源。这些应用包括自然语言处理、机器学习、计算机视觉、大型语言模型、图像识别算法、分类、聚类和深度学习。本文提出了“人文 AI”一词,以描述一种新兴的跨学科实践形式,该实践使用和开发基于 AI 的研究应用程序来回答人文研究问题及其纠缠不清的人文反思。我们创造这个术语是为了使其实践的认识论和物质特殊性以及其可供性使之成为可能的新知识形式变得隐晦和可见。本文介绍了 GRIDH 在“人文 AI”领域的项目及其开发的 AI 资源和应用。
本公告中提供的信息为摘要信息,并非全面信息或提供法律建议。如果您希望获得有关具体情况的建议,请联系我们的律师。© Mori Hamada & Matsumoto。保留所有权利。2
结果:本综述突出了跨研究的PBM参数的可变性,阻碍了对最佳协议的共识。需要对治疗参数的标准化和严格的临床试验来解锁PBM的全部治疗潜力。鉴定了87项临床试验,该试验研究了糖尿病中PBM(计划用PBM治疗的5,837例患者)。评估PBM对糖尿病神经病的影响的临床试验显示,疼痛减轻和潜在的生活质量改善。针对伤口愈合的研究表明,PBM增强了血管生成,纤维细胞增殖和胶原蛋白密度。PBM对糖尿病性视网膜病的影响仍然尚无定论,需要进一步研究。在血糖控制中,PBM对代谢参数(包括葡萄糖耐受性和胰岛素抵抗)表现出积极影响。
摘要:近年来,多元同步指数(MSI)算法作为一种新的频率检测方法,在基于稳态视觉诱发电位(SSVEP)的脑机接口(BCI)研究中受到越来越多的关注。然而,MSI算法难以充分利用脑电图(EEG)中与SSVEP相关的谐波分量,限制了MSI算法在BCI系统中的应用。在本文中,我们提出了一种新的滤波器组驱动的MSI算法(FBMSI)来克服该限制并进一步提高SSVEP识别的准确性。我们通过开发一个6命令SSVEP-NAO机器人系统并进行大量实验分析来评估FBMSI方法的有效性。首先使用从9名受试者采集的EEG进行离线实验研究,以研究不同参数对模型性能的影响。离线结果表明,所提出的方法取得了稳定的改进效果。我们进一步对六名受试者进行了在线实验,以评估所开发的 FBMSI 算法在实时 BCI 应用中的效果。在线实验结果表明,FBMSI 算法使用仅一秒的数据长度即可获得 83.56% 的平均准确率,比标准 MSI 算法高出 12.26%。这些广泛的实验结果证实了 FBMSI 算法在 SSVEP 识别中的有效性,并展示了其在改进的 BCI 系统开发中的潜在应用。
使用这些实践有助于促进产品生命周期阶段之间的平稳过渡。飞机中的电线织机通常由数千条电缆组成,通常使用计算机辅助设计(CAD)工作站手动用工程师手动用个人知识和如何通过结构路由电缆将电缆路由。必须满足许多必须满足的调控和功能设计规则(例如弯曲半径,电磁敏感性,支撑支架的放置,防止腐蚀和磨损的保护,电缆捆绑,电缆之间的交叉点,电缆发散之间的交汇处等)。路由过程是高度重复的,工程师之间的设计输出可能会有很大差异。电线设计通常与原理结构设计并行进行。整个设计过程的迭代性质是,结构性变化很容易发生,需要为任何受影响的电气电缆耗尽时要耗时。以类似的方式,飞机中的液压管和气管被手动路由,并由不同的设计规则支配。路由过程的重复,规则管理的性质使其成为应用基于知识系统的主要候选人。
前瞻性创新治理提供了一个框架来实现这一点。通过培育一个支持探索、实验和学习的环境,前瞻性创新治理有助于在治理体系内建立弹性和适应性。这种方法不仅仅是为未来做准备,而且是积极塑造未来,而战略远见是前瞻性创新治理的一个关键组成部分。建立一个授权环境和合法化和维持前瞻性创新治理工作所需的机构至关重要,因此确保战略远见和创新在更广泛的背景下实施,并让产生的知识产生影响 2 。
