摘要 基于电力电子 (PE) 的可再生能源越来越多地融入电力系统,与以同步发电机组为主的电力系统中的故障电流相比,对故障电流的传统水平和特性产生了重大影响。可再生能源丰富的电力系统的安全运行需要对高可再生能源份额的各种场景中的故障电流进行适当的估计。虽然使用详细而复杂的时域动态模拟可以计算故障电流,但从操作角度来看,由此产生的建模复杂性和计算负担可能不够。因此,有必要开发替代的更快的数据驱动故障电流估计方法来支持系统操作员。为此,本文利用基于人工神经网络 (ANN) 的工具来估计电力电子可再生能源渗透率高的电力系统中的短路电流特性。使用 DIgSILENT PowerFactory 离线生成针对不同可再生能源渗透率的短路,同时考虑可再生能源的控制要求(例如,故障穿越要求)。生成的数据集用于训练 ANN,以提供渗透水平与短路电流特性之间的映射。使用改进的 IEEE 9 总线测试系统应用该方法证明了其有效性,可以仅基于基于电力电子的可再生能源的渗透率高精度地估计短路电流(亚瞬态电流、瞬态电流和峰值电流)的分量。
短路 V gs 25V/ 0V , V dc 400V V gs 22V/ 0V , V dc 400V V gs 18V/ 0V , V dc 400V V gs 25V/ 0V , V dc 0V V gs 22V/ 0V , V dc 0V V gs 18V/ 0V , V dc 0V
表一总结了本设计与其他参考限流和短路保护电路[6][8][9]在采样精度、电流范围、功耗和温度特性方面的电路性能。本设计在高电源电压和宽电流范围、采样精度、电路复杂度、温度相关控制能力和PSRR方面优于其他提出的电路。测量结果验证了本文提出的电路可以提供
整流桥由二极管D2、D3、D4、D5组成。经滤波电容C4、直流电压TS、初级开关管Q1、储能电容C4,反激式功率变换器将能量经变压器T1、二极管D5、电感L1和电容C2整流滤波后输出直流电压。变换器工作时,通过改变PWM的占空比,来调节输出电压[2][3]。电源正常工作时,C4中流过交流纹波电流,从而形成交流纹波电压。当发生过流或短路时,电容电压处的电压纹波会急剧增大。根据开关功率变换器的特性,可确定电源的工作状态,并根据交流分量增量的大小来设置不同交流分量保护点的高低,完成短路保护电路的设计[4][5][6]。
情感神经反馈训练可以自我调节情绪调节的定义电路。最近研究了这种方法是针对精神疾病的额外治疗方法,对症状和行为产生积极影响。在神经反馈训练之后,一个关键的方面是将自我调节策略转移到实验室外部,以及如何继续在非控制环境中加强这些策略。在这个迷你审查中,我们讨论了自然主义设置下的情感神经反馈的当前成就。为此,我们首先简要概述了情感神经反馈协议的最先进。然后,我们将虚拟现实作为朝着“野外”协议和使用移动神经技术的最终进步的最终目标的过渡步骤进行讨论。最后,我们讨论了有关情感神经反馈方案的公开挑战,包括便利性和可靠性,注意力和工作量中的环境影响等主题等。
在可再生能源的高渗透下,电网正面临着诸如生产延迟,风能和太阳能放弃等发展问题。随着可再生能源安装的持续增长,例如风能,光伏(PV)以及发电能力的增加,迫切需要在大规模上增加峰值负载和频率调节能力,以减轻大型可再生能源整合引起的消耗问题,然后需要大量的可再生能源集成,然后需要增加相关量和频率调节设备的发电企业。因此,峰值负载和频率调节企业必须对设备资产进行科学成本管理。本文介绍了生命周期成本的概念,发展和观点(LCC)在高估的可再生能源电网中的设备资产管理,并在设备资产管理过程中探究成本收集和估算方案。
肺癌是全球癌症相关死亡的主要原因,可以分为小细胞肺癌和非小细胞肺癌(NSCLC)。NSCLC是最常见的组织学类型,占所有肺癌的85%。NSCLC中常见的Kirsten大鼠肉瘤病毒癌基因(KRAS)突变与预后不良有关,这可能是由于对大多数全身疗法的反应不良,并且缺乏靶向药物。有关新的小分子KRAS G12C抑制剂,AMG510和MRTX849的最新发表的临床试验数据,表明这些分子可能有可能有助于治疗KRAS突变的NSCLC。同时,在免疫治疗过程中,在患有KRAS突变的患者中观察到了免疫效率。在本文中,综述了本文的发病机理,治疗状况,免疫疗法的进展以及KRAS突变NSCLC的靶向治疗。
1俄亥俄州立大学,俄亥俄州哥伦布,俄亥俄州,美国,xing.174@osu.edu 2基因半导体公司,美国弗吉尼亚州斯特林市,弗吉尼亚州斯特林,ranbir.singh@genesicsemi.com 3 sandia国家实验室,美国新罕布什尔州阿尔巴克基,美国,美国,satcitt@sandia.gov--- 5-A SIC MOSFET由基因制造。涉及静态特征和短路可持续能力。在不同的门电压下以2.2 kV的排水偏置探索它们的饱和电流。在2.2 kV和18-V门电压的排水电压下测量两种设备的短路承受时间。将短路测试结果与来自四个供应商的1.2 kV SIC MOSFET进行了比较。测试结果表明,在SC事件中,通道长度和较高电压等级的SIC MOSFET具有更长的持续时间。此外,开发了短通道设备的设备模型。所有测试均在室温下进行。简介和动机 - 中型电压宽带隙(WBG)半导体大于3 kV对于功率转换应用具有吸引力,以提高性能。尽管这些设备中的大多数仍在出现,但价格明显较低,并且很容易从基因上获得设备。需要评估这些设备的性能和可靠性,以确保将来会有大量的市场吸引力。在本文中,评估了新一代3.3-kV,5-A SIC MOSFET的基因。根据测试结果开发了香料模型。SC测试的电路图如图4。与针对相似设备的静态和动态评估的先前报告相比,在这种情况下,有两种具有不同通道长度的设计类型。结果和意义 - 第一象限I-V曲线和阈值电压如图1-2所示。在其排水量泄漏电流,闸门源泄漏电流和电容中没有明显差异。如图3所示,测量额定电压(2.2 kV)和三个不同的栅极电压下的饱和电流。最初设置了2.2-KV,18-V v g„的SCWT测量。A 1-1.TS增量。图5-6中显示了每个回合的设备故障波形和SC电流。从四个不同供应商的1.2 kV SIC MOSFET也以额定电压(0.8 kV)和18-V V GS的2/3进行测量。比较图如图7所示。与短通道设备相比,长通道设备的RDSON有1.23倍的RDSON,0.49个时间ID(SAT),18-V V g„和1.4倍SCWT。对于诱导设备故障的脉冲,短通道设备在5范围内消散了约900 MJ,而长通道设备在7 TTS内消散了799 MJ。由于两个设备的模具尺寸几乎相同,因此具有较大SC能量的短通道设备比长通道设备更早。将V GS拉到零后,这两个设备都失败。这种故障机制可以是通过设备的熔融铝穿透[2]。与1.2 kV设备相比,3.3-kV脱离显示更长的SCWT。由于末端电容没有差异,因此仅针对短通道设备执行动态评估,如图8所示。在2.4-kV DC电压和6-A I DS电流时,打开损失为850 TD,为25 kV/ps,关闭损耗为150 µJ,为53 kV/ias。用于香料建模零件,使用级别1,级别2和降压电荷模型[3](图9)。拟合结果表明,降压电荷模型更适合这种中电压功率SIC MOSFET。车身二极管特性和末端电容也被建模并在图10中显示。参考 - [1] H. Wen,J。Gong,Y。Han和J. Lai,“ 3.3 kV 5 A SIC MOSFET的表征和评估,用于固态变压器应用”,2018年亚洲能源,电力和运输电气化会议(APTICERAIGT),2018。[2] K. Han,A。Kanale,B。J。Baliga,B。Ballard,A。Morgan和D. C. Hopkins,“ 1.2KV 4H-SIC MOSFETS和JBSFETS和JBSFETS的新短路故障机制”,2018 IEEE第6次IEEE第6届宽带电源设备和应用程序(WIPDA)(WIPDA)的第6届研讨会,2018年。[3] N. Arora,“ VLSI电路模拟的MOSFET模型”,计算微电子学,1993。
对更高能量密度的不懈追求对电池安全性提出了挑战。[8,9] 更薄的隔膜会增加穿孔的危险,而锂金属的使用则有可能引起枝晶穿透和短路。发生短路时,快速自放电产生的大电流通过低电阻电子通路产生焦耳热,使隔膜和电极材料的温度达到击穿点(150-250°C),[10] 引发一系列放热反应和热失控。[11,12] 内部短路可能是由机械变形(例如在钉刺试验期间 [13,14] )和过度充电等外部原因引起的,但也可能由于没有明显的外部原因而发生,例如最近发生的停放电动汽车自燃事件。[15] 推测的机制包括电池中导电丝的生长,最终会穿透隔膜并使电池短路。 [16] 目前已开发出各种防止和管理锂离子电池热失控的方法,包括压力释放孔、[17] 防止过度充电的先进电池管理系统、设计为断裂以便电子隔离短路的集电器,[18] 以及阻燃添加剂。[19]
对更高能量密度的不懈追求对电池安全性提出了挑战。[8,9] 更薄的隔膜会增加穿孔的危险,而锂金属的使用则有可能引起枝晶穿透和短路。发生短路时,快速自放电产生的大电流通过低电阻电子通路产生焦耳热,使隔膜和电极材料的温度达到击穿点(150-250°C),[10] 引发一系列放热反应和热失控。[11,12] 内部短路可能是由机械变形(例如在钉刺试验期间 [13,14] )和过度充电等外部原因引起的,但也可能由于没有明显的外部原因而发生,例如最近发生的停放电动汽车自燃事件。[15] 推测的机制包括电池中导电丝的生长,最终会穿透隔膜并使电池短路。 [16] 目前已开发出各种防止和管理锂离子电池热失控的方法,包括压力释放孔、[17] 防止过度充电的先进电池管理系统、设计为断裂以便电子隔离短路的集电器,[18] 以及阻燃添加剂。[19]
