Incorporation of Graphene Quantum Dots, Iron, and Doxorubicin in/on Ferritin Nanocages for Bimodal Imaging and Drug Delivery Fatemeh Nasrollahi, Barindra Sana, David Paramelle, Samad Ahadian, Ali Khademhosseini, Sierin Lim* Dr. F. Nasrollahi, Dr. Barindra Sana, Prof. Sierin Lim School of Chemical and Biomedical Nanyang Technological University,Nanyang Drive 70 Nanyang Drive,N1.3,新加坡637457电子邮件:slim@ntu.edu.edu.sg F. Nasrolllhi博士,Samad Ahadian博士,Samad Ahadian博士,Ali Khademhosseini教授Ali Khademhosseini教授美国加利福尼亚大学加利福尼亚大学洛杉矶分校生物工程,加利福尼亚州90095,美国纳斯罗拉希博士,纳斯罗拉希博士,伊朗德黑兰大学工程学院,伊朗,德黑兰大学工程学院。框:11155/4563 B. Sana P53博士,科学技术与研究机构(A*Star),8A生物医学格罗夫,新加坡138648 David Paramelle材料研究与工程研究所博士*Star(科学,技术和研究机构)(科学,技术与研究机构) Khademhosseini放射科学系,戴维·盖芬医学院,加利福尼亚大学洛杉矶分校,洛杉矶分校,加利福尼亚州90095,美国化学与生物分子工程系,加利福尼亚州洛杉矶 - 洛杉矶大学,加利福尼亚州洛杉矶大学,加利福尼亚州90095 Nanyang Drive,第N3.1块,#01-03,新加坡637553关键字:多功能铁蛋白纳米含量,pH响应性荧光团,荧光成像,MRI对比剂,多模式成像,石墨烯量子点
对于某些可区分的函数h:r d→r和d二维向量的总数。这种特征的示例包括例如总均值,比率或相关系数。这也称为有限的人口推断问题(Beaumont和Haziza 2022)。我们进一步假设n很大,每个单个实验的计算成本也是不可行的。在这种情况下,研究经常诉诸于子采样。亚采样方法在过去几年中的人口急剧增加。例如,MA,Mahoney和Yu(2015); Ma等。(2022)引入了大数据回归的杠杆采样,随后启发了逻辑回归的类似发展(Wang,Zhu,Zhu和Ma 2018; Yao and Wang 2019)广义线性模型(AI等人。2021b; Yu等。2022)和分位回归(Ai等人2021a; Wang,Peng和Zhao 2021)。同样,Dai,Song和Wang(2022)开发了
©作者2024。Open Access本文是根据Creative Commons Attribution 4.0 International许可获得许可的,该许可允许以任何媒介或格式使用,共享,适应,分发和复制,只要您对原始作者和来源提供适当的信誉,请提供与创意共享许可证的链接,并指出是否进行了更改。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问http://创建ivecommons。org/licen ses/by/4。0/。
这项研究介绍了用于Covid-19检测的生物传感器的设计和分析,将石墨烯元面积与金,银和GST材料整合在一起。所提出的传感器架构将平方环谐振器与圆环谐振器结合在一起,并通过红外制度中的Comsol多物理模拟进行了优化。传感器表现出非凡的性能特征,在初级检测带(4.2-4.6μm)中的吸收值超过99.5%,次级带(5.0-5.5μm)中的吸收值约为97.5%。该设备表现出高灵敏度(4000 nm/riU),检测极限为0.078,优点为16.000riu⁻时,当利用晶体GST作为底物材料时。通过使用XGBoost回归的机器学习优化,传感器的性能得到了进一步提高,从而在各种操作参数之间实现了预测和实验值之间的完美相关性(R²= 100%)。双波段检测机制,结合了高级材料和机器学习优化的整合,为快速,无标签和高度敏感的COVID-19检测提供了有前途的平台。这项研究有助于开发用于病毒检测和疾病诊断的下一代生物传感技术。
石墨烯,排列在平坦的蜂窝晶状体中的碳原子具有许多有趣的电子特性[1,9]。在实现实验室中大型石墨烯晶体的实现后[10]的兴趣,理论和实验性是强烈的。主要特征之一是物理学家所说的电子在石墨烯中的“相对论行为”,石墨烯中的电子可以看作是生活在2 d空间中的无质量费米子,其动力学由weyl hamiltonian产生,即零毛汉氏菌,零含量为零。我们在这里提出了石墨烯的标准分析,该标准分析显示了Weyl纤维,这是对石墨烯的离散处理,可追溯到[13](即使不是更早)。我们已经有一段时间对经受垂直均匀磁场的石墨烯片的电子特性感兴趣。我们通过将哈密顿的积分内核乘以单型相因子来对这种情况进行建模,该技术被称为“ PEIERLS替代” [6,7,11]。
信息工程,基础设施和可持续能源部(DIIES),雷格·卡拉布里亚(Reggio Calabria)的大学“地中海”。feo di vito,89122意大利雷吉奥·卡拉布里亚(Reggio Calabria),b agenzia nazionale per le nuove tecnologie,l'Energia e lo sviluppo经济索斯替尼比尔(Enea)(Enea),Casaccia Casaccia研究中心,罗马00123,ITALY C ITALY IBERIAN IBERIAN IBERIAN NANOTECHNOLOGE BRAIG-3 33 D YSESE大学材料科学与工程系,首尔,北大韩民国材料科学与工程系,首尔国立大学材料科学与工程部,首尔市长08826,大韩民国高级材料研究所高级材料研究所(RIAM),首尔国立大学,首尔国立大学,首尔08F826,韩国共和国Gustorea Gyernied Instuperiity offector offerea thepsier offeraea h himea keprotied首尔国立大学,首尔08826,大韩民国
摘要这是先前评论的更新(Naumis et al 2017rep。prog。物理。80 096501)。考虑了线石墨烯和其他金属,绝缘,铁电,铁弹性,铁磁和多效2D材料的实验和理论进步。We surveyed (i) methods to induce valley and sublattice polarisation ( P ) in graphene, (ii) time-dependent strain and its impact on graphene's electronic properties, (iii) the role of local and global strain on superconductivity and other highly correlated and/or topological phases of graphene, (iv) inducing polarisation P on hexagonal boron nitride monolayers via strain, (v)通过应变,(VI)铁核2D材料(带有固有弹性(σ),电气(P)和磁性(M)极化,修饰过渡金属二色元化元素单层单层单层的光电特性,以及初期的2D多效中部和(VII)MoiréBirayflator flato seperer,以及其他分期型均型均匀的型号,并表现表现出可以通过旋转和剪切应变调整的铁从订单的系统。该更新具有可调二维量子旋转霍尔在德国,元素2D铁电抗性和2D多效性NII 2的实验实现。该文件是为了讨论单层中发生的效果的讨论,然后进行了有关BiLayers和
在这项工作中,合成了氧化石墨烯(GO)纳米颗粒并随后使用3-氨基丙基三甲氧基硅烷(APTMS)进行了修饰。Anderson型多氧碱[(C 4 H 9)4 N] 2 [CRMO 6 O 18(OH)6],然后将其固定在改良的石墨烯氧化石墨烯纳米颗粒的表面上。The obtained catalyst was characterized using Fourier-transform infrared spectroscopy (FT-IR), energy-dispersive X-ray spectroscopy (EDS), inductively coupled plasma (ICP), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), Raman spectroscopy, and X-ray diffraction (XRD).在基于溶剂的条件下,评估了该可回收混合催化剂的催化性能在75°C下合成了苯咪唑衍生物。混合催化剂表现出易于分离,并且可以成功重复使用至少六次,而所需产品的产量仅略有降低。浸出和恢复测试以及FT-IR分析证实了催化活性物种的高稳定性和催化剂的异质性。
PFS流平面设计的关键方面包括一个饲料系统,包括碎屑,初始铣削,然后进行跳过浮选,粗糙的浮选,硫化物浮选 - 通过磁性分离,增厚,过滤和处置库存处理尾矿。石墨通过涉及抛光厂和清洁阶段的连续步骤进行进展 - 最初是在头皮上 + 100元(0.149 mm)筛选,然后进行脱水(仅屏幕尺寸不足),单独的搅拌介质铣削和屏幕过度尺寸的清洁量和尺寸较大的分数。组合的浓缩物被过滤,然后在进入散装浓缩物饲料箱之前干燥,以供筛选和产品装袋植物。关键产品将是粗薄片(+48网格),中片(+100元网)和细(-100元)。
环形石墨烯(TG)代表了一类新的碳纳米结构,将曲率驱动的场限制与量子增强电荷相干性集成在一起。与常规的基于碳的增强剂不同,TG表现出源自无折叠的实验和理论证据链的3×10 9的电磁场扩增因子(AF)。曲率诱导的定位和等离子体杂交理论(PHT)的协同作用使van der waals(VDW)在青铜基质中的膨胀从0.4 nm到577 nm,从而使超高的TG浓度仅为0.005 wt%,以驱动机械性能的转化增强。将其纳入无铅铜制时,TG将耐磨性提高458%,并使CO₂排放量减少78.2%,从而提供了史无前例的性能和可持续性组合。这些作用源于量子等离子体加固机制,这些机制改善了纳米级的应力转移,负载分布和分子内聚力。与常规合金元素(例如PB或Ni)不同,依赖于散装物质特性的PB或Ni,TG从根本上改变了通过纳米级力重新分布来改变耐药性。这项研究将TG确立为下一代金属纳米复合材料的破坏性材料,将基本纳米科学与与行业相关的摩擦学验证合并。与全球第八大卡车制造商Scania合作进行,该验证证实了其直接的工业相关性,证明了现实世界中的适用性在高性能耐磨应用中。连接电磁场放大,VDW扩展和摩擦学验证的明确证据链支持TG的量子工程增强功能,将其定位为高级制造和重型产业的基石。