脱碳的热量在全球向可持续能源转变中至关重要,并且废热液化带来了变革性的机会,尤其是在工业活动领域。因此,本研究研究了与非常规热源集成的区域供暖网络(DHN)的性能,特别是挖水和工业废物,旨在使人们对各种DHN配置的技术和环境含义有全面的了解。为此,已经开发并采用了一种精致的网络染色模拟模型来评估几种网络大小和热源组合的成本和性能,并针对英国巴恩斯利进行了案例研究。结果表明,大型网络的平均热效率约为87%。利用矿水的网络在11.6 - 11.9 p/kWh的范围内具有升级的热成本(LOCH);引入工业废物将其降低到10.6 - 10.7 p/kWh。此外,废热集成将所提供的热量的碳因子降低到0.05 kgco2/kWh。在案例研究网络所涵盖的地区从锅炉到区域供暖的过渡显示,降低边际排放量从44.76%到83.46%。这些网络实现经济生存能力的气价从8.6到8.8 p/kWh不等。总而言之,DHNS提出了,尤其是在用工业废热增强时,出现了作为Barnsley等领域的有前途的解决方案,以追求可持续的供暖。这些发现对于政策制定者和当地理事机构来说至关重要,因为英国可以满足其2050年净零野心。
通过简单的合成方法利用基于地球丰富元素的低成本,高活性和鲁棒的氧气进化反应(OER)电催化剂,这对于通过水电解而对绿色水力产生而言至关重要。在这项工作中,Nio,Co 3 O 4和Nico 2 O 4纳米颗粒层具有相同的表面形态,通过简单的喷雾热解方法在相同的沉积条件下制备了相同的表面形态,并且相对研究了其OER活性。在所有这三个电催化剂中,NICO 2 O 4显示了420 mV的最低电位,以驱动基准电流密度为10 mA cm -2和最小的Tafel斜率(84.1 mV dec -1),这些密度与基准标准的商业RUO 2电催化剂的OER性能相当。NICO 2 O 4的高OER活性归因于Co和Ni原子之间电子性质的协同作用和调制,这大大降低了驱动OER活动所需的过电位。因此,据信,通过这种简单方法合成的NICO 2 O 4将是一种竞争性候选者作为工业电催化剂,具有高效率和低成本的大规模绿色氢生产,这是通过水电解产生的。
1:25 PM高度低级斑岩铜矿床J. Perello;必和必拓Billiton矿物质,加利福尼亚州旧金山,加利福尼亚州,不可避免地耗尽来自斑岩铜矿石的浅层高级超基因铜矿,未来的大规模生产必须来自更深层次的高质量。 在斑岩铜沉积物中的降压铜矿化(通常被视为低级)在大型系统中可能有很大差异(<0.3 –> 2%CU),其中有些人在某些情况下具有异常高级(> 3%CU)的成分。 以下特征被确定为有利于大型(> 100亿吨),高级(> 1%Cu)矿化的大型(> 1%CU)矿化的特征:强烈的石英 - 韦恩特库托工厂;岩浆水热角球;近端Skarns;碳酸盐替代体;伸缩沉积物中的vuggy残留石英或静脉系统;存在岩性屏障和反应性镁铁质宿主岩石。 在探索程序中考虑这些功能可以帮助最大程度地提高发现高级低级斑岩铜铜的机会。1:25 PM高度低级斑岩铜矿床J. Perello;必和必拓Billiton矿物质,加利福尼亚州旧金山,加利福尼亚州,不可避免地耗尽来自斑岩铜矿石的浅层高级超基因铜矿,未来的大规模生产必须来自更深层次的高质量。在斑岩铜沉积物中的降压铜矿化(通常被视为低级)在大型系统中可能有很大差异(<0.3 –> 2%CU),其中有些人在某些情况下具有异常高级(> 3%CU)的成分。以下特征被确定为有利于大型(> 100亿吨),高级(> 1%Cu)矿化的大型(> 1%CU)矿化的特征:强烈的石英 - 韦恩特库托工厂;岩浆水热角球;近端Skarns;碳酸盐替代体;伸缩沉积物中的vuggy残留石英或静脉系统;存在岩性屏障和反应性镁铁质宿主岩石。在探索程序中考虑这些功能可以帮助最大程度地提高发现高级低级斑岩铜铜的机会。
2006 年,牛津街工厂的五台电动离心式冷水机组中有两台被更高效的新型中压变频冷水机组取代。这些新型冷水机组性能卓越,使工厂能耗降低了约 18%(360 万千瓦时),相当于减少了约 470 万磅的二氧化碳排放量,并消除了大量消耗臭氧层的氟利昂。
中红外仪器 (MIRI) 由英国牵头的十个欧洲成员国与 NASA 喷气推进实验室合作设计、建造和测试。欧洲贡献由科学与技术设施委员会 (STFC) 的 Gillian Wright 博士牵头,光学相机和热保护的大部分设计由 STFC 科学家和工程师完成。整个 MIRI 仪器随后在 STFC 卢瑟福阿普尔顿实验室的热真空室和振动测试设施中进行测试,以确保其在发射后完好无损并在恶劣的太空环境中完美运行。
压水核反应堆和熔盐热能存储耦合的排名方法 2 3 Jaron Wallace *a、CJ Hirschi a、Cameron Vann a、Matthew Memmott a 4 5 a 杨百翰大学 6 7 * 通讯作者 8 jaron.a.wallace@gmail.com 9 PO Box 490, Mona, UT 84651 USA 10 11 12 摘要 13 14 热能存储 (TES) 系统是解决电力市场需求波动的一种方案,可与核电站耦合以实现负荷跟踪。这项工作侧重于开发一种方法来评估将 TES 17 系统集成到现有压水核电站的潜在设计。拟议的排名方法允许一组专家根据从文献中得出的排名标准来假设和权衡设计 19。本研究中开发的方法有助于最终选择现有核电站的 TES 设计。相同的过程可用于分析其他 TES 和核反应堆设计。通过该方法确定的最佳设计是将 TES 系统置于蒸汽发生器之后,并利用核电站产生的蒸汽来加热熔盐 TES 装置。本研究的另一个结论是,在设计选择过程中普遍存在人为偏见,应使用标准化排名标准和大型专家组等措施来最大限度地减少这种错误。 关键词 热能存储、核电、设计选择、灵活能源系统、核能 混合能源系统 引言 在目前的核电站群中,每个反应堆的功率水平无法以匹配全天波动的能源需求所需的上升率波动 [1]。随着可再生能源在电力市场的渗透率不断提高,对非可再生能源的需求上升率也越来越高,也越来越明显 [2]。图 1 显示了这一现象,也称为“CAISO 鸭子图”。该图显示了加州一天内非可再生能源所需的能量,并显示了多年的能源需求。40 41
图 1:在 Raptor 区内的 3 个新孔中发现高品位镍块状硫化物(有待化验) Talon 首席勘探和运营官 Brian Goldner 表示:“新的钻探向我们表明,Tamarack 侵入岩体可以成为美国区域规模的镍铜资源。我们已经将地点移至公司当前镍铜资源区外近 2 英里处,并成功在与当前资源区不同的侵入岩(新系统)中发现高品位镍铜。虽然该过程仍处于早期阶段,但这些初步结果提供了确凿的证据,证明 Tamarack 侵入岩体具有区域规模的潜力,由于这些令人兴奋的初步结果,我们打算在 2023 年将进一步勘探 Tamarack 侵入岩体作为优先事项。” Goldner 继续说道:“去年在 CGO 西部地区发现的浅层高品位镍矿化开始时只有 1.3 米厚的高品位镍块状硫化物,而该矿化最终发展到仅 25 米远的地方,厚度接近 14 米。我预计今年的
摘要 燃烧化石燃料的能源基础设施产生的碳排放有增无减,造成的灾难性影响要求我们加速开发大规模二氧化碳捕获、利用和储存技术,而这些技术的基础是对分子级化学过程的基本理解。在地下,富含二价金属的岩石可以与二氧化碳发生反应,将其永久地封存为稳定的金属碳酸盐矿物,注入后孔隙流体的 CO2-H2O 组成是主要控制变量。在此,我们讨论了水介导碳化的机械反应途径,碳矿化发生在纳米级吸附水膜中。在充满以 CO2 为主的流体的孔隙中,碳化反应局限于覆盖矿物表面的 Å 到 nm 厚的水膜,这使得金属阳离子能够释放、运输、成核和金属碳酸盐矿物结晶。尽管这看似违反直觉,但实验室研究表明,在这些低水环境中碳化速度很快,近年来,人们开始更好地理解其机理细节。本综述的首要目标是描述控制这些反应性和动态准二维界面中 CO 2 矿化的独特潜在分子尺度反应机制。我们强调了解薄水膜中独特性质的重要性,例如在纳米限制下,水的介电性质以及随之而来的离子溶解/水合行为如何变化。最后,我们确定了未来工作的重要前沿和利用这些基本化学见解开发 21 世纪脱碳技术的机会。
Ziming Chen 1 , ∗ , Robert L Z Hoye 2 , 3 , ∗ , Hin-Lap Yip 4 , 5 , ∗ , Nadesh Fiuza-Maneiro 6 , Iago López-Fernández 6 , Clara Otero-Martínez 6 , Lakshminarayana Polavarapu 6 , Navendu Mondal 1 , Alessandro Mirabelli 7 , Miguel Anaya 7 , Samuel D Stranks 7 , Hui Liu 8 , Guangyi Shi 8 , Zhengguo Xiao 8 , Nakyung Kim 9 , Yunna Kim 9 , Byungha Shin 9 , Jinquan Shi 10 , 11 , Mengxia Liu 10 , 11 , Qianpeng Zhang 12 , Zhiyong Fan 12 , James C Loy 13 , Lianfeng Zhao 14 , Barry P Rand 14 , 15 , Habibul Arfin 16 , Sajid Saikia 16 , Angshuman Nag 16 , Chen Zou 17 , Lih Y Lin 18 , Hengyang Xiang 19 , Haibo Zeng 19 , Denghui Liu 20 , Shi-Jian Su 20 , Chenhui Wang 21 , Haizheng Zhong 21 , Tong-Tong Xuan 22 , Rong-Jun Xie 22 , Chunxiong Bao 23 , Feng Gao 24 , Xiang Gao 25 , Chuanjiang Qin 25 , Young-Hoon Kim 26 , 27