通过多米尼科·蒙特萨诺(Domenico Montesano)49,80131 Naples,意大利B 891,BB生物学,化学和药物科学和技术系(RUISCEF) -Cnr, Ugo La Malfa 153, Palermo 90146, Italy D University of Granada, Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, 18071 Granada, Spain and Andalusian Institute of Earth Sciences, Csic-Ugr, 18100 Armilla, Granada, Spain Fo Laboratory for Molecular Photonics, Department of Chemistry, University of Miami, 1301 Memorial Drive,Coral Gables 33146-0431,佛罗里达州佛罗里达州G,美国分子医学和医学生物技术部,通过塞尔吉奥·潘西尼(Sergio Pansini)5,80131 naples,意大利h意大利化学科学系,Viale Andrea Doria 6,95125 CATANIA,意大利,意大利,意大利,意大利,意大利,意大利,通过多米尼科·蒙特萨诺(Domenico Montesano)49,80131 Naples,意大利B 891,BB生物学,化学和药物科学和技术系(RUISCEF) -Cnr, Ugo La Malfa 153, Palermo 90146, Italy D University of Granada, Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, 18071 Granada, Spain and Andalusian Institute of Earth Sciences, Csic-Ugr, 18100 Armilla, Granada, Spain Fo Laboratory for Molecular Photonics, Department of Chemistry, University of Miami, 1301 Memorial Drive,Coral Gables 33146-0431,佛罗里达州佛罗里达州G,美国分子医学和医学生物技术部,通过塞尔吉奥·潘西尼(Sergio Pansini)5,80131 naples,意大利h意大利化学科学系,Viale Andrea Doria 6,95125 CATANIA,意大利,意大利,意大利,意大利,意大利,意大利,通过多米尼科·蒙特萨诺(Domenico Montesano)49,80131 Naples,意大利B 891,BB生物学,化学和药物科学和技术系(RUISCEF) -Cnr, Ugo La Malfa 153, Palermo 90146, Italy D University of Granada, Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, 18071 Granada, Spain and Andalusian Institute of Earth Sciences, Csic-Ugr, 18100 Armilla, Granada, Spain Fo Laboratory for Molecular Photonics, Department of Chemistry, University of Miami, 1301 Memorial Drive,Coral Gables 33146-0431,佛罗里达州佛罗里达州G,美国分子医学和医学生物技术部,通过塞尔吉奥·潘西尼(Sergio Pansini)5,80131 naples,意大利h意大利化学科学系,Viale Andrea Doria 6,95125 CATANIA,意大利,意大利,意大利,意大利,意大利,意大利,通过多米尼科·蒙特萨诺(Domenico Montesano)49,80131 Naples,意大利B 891,BB生物学,化学和药物科学和技术系(RUISCEF) -Cnr, Ugo La Malfa 153, Palermo 90146, Italy D University of Granada, Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, 18071 Granada, Spain and Andalusian Institute of Earth Sciences, Csic-Ugr, 18100 Armilla, Granada, Spain Fo Laboratory for Molecular Photonics, Department of Chemistry, University of Miami, 1301 Memorial Drive,Coral Gables 33146-0431,佛罗里达州佛罗里达州G,美国分子医学和医学生物技术部,通过塞尔吉奥·潘西尼(Sergio Pansini)5,80131 naples,意大利h意大利化学科学系,Viale Andrea Doria 6,95125 CATANIA,意大利,意大利,意大利,意大利,意大利,意大利,通过多米尼科·蒙特萨诺(Domenico Montesano)49,80131 Naples,意大利B 891,BB生物学,化学和药物科学和技术系(RUISCEF) -Cnr, Ugo La Malfa 153, Palermo 90146, Italy D University of Granada, Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, 18071 Granada, Spain and Andalusian Institute of Earth Sciences, Csic-Ugr, 18100 Armilla, Granada, Spain Fo Laboratory for Molecular Photonics, Department of Chemistry, University of Miami, 1301 Memorial Drive,Coral Gables 33146-0431,佛罗里达州佛罗里达州G,美国分子医学和医学生物技术部,通过塞尔吉奥·潘西尼(Sergio Pansini)5,80131 naples,意大利h意大利化学科学系,Viale Andrea Doria 6,95125 CATANIA,意大利,意大利,意大利,意大利,意大利,意大利,
HAL 是一个多学科开放存取档案库,用于存放和传播科学研究文献,无论这些文献是否已出版。这些文献可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
有效的矿物前景映射(MPM)依赖于机器学习(ML)模型从地球物理数据中提取有意义模式的能力。然而,在矿物探索中,与整体地质景观相比,鉴定矿藏的存在通常是罕见的事件。这种稀有性导致了高度不平衡的数据集,其中积极实例(矿化样品)的频率大大低于负面实例(非矿化样品)。不平衡的数据可能会使ML模型偏向多数类,从而导致对主要兴趣的少数类别(矿化样本)的预测不准确。为了应对这一挑战,我们在这项研究中提出了两级方法。在数据级别上,我们采用了在培训数据集上运行的不平衡数据处理技术并更改类分布。在算法级别上,我们调整了模型的决策阈值,以平衡误报和假否定性之间的交易。实验结果是根据芬兰拉普兰的地球物理数据收集的。数据集表现出明显的类别不平衡,包括17个正样本与1个。84×10 6负样本。我们研究了处理不平衡数据对四个ML模型的性能的影响,包括多层感知器(MLP),随机森林(RF),决策树(DT)和逻辑回归(LR)。从结果来看,我们发现MLP模型实现了最佳的总体表现,使用合成少数民族过采样方法,平衡数据的总准确度为97.13%。随机森林和DT也表现良好,精度分别为88.34%和89.35%。这项工作的实施方法是在QGI中集成为新工具包,称为MPM的EIS工具包1。
ore允许申请号24-00120 - 霍华德·温德有限责任公司的申请,以宣告性裁决,即《公共服务法》第VIII条不适用于对现有霍华德风能设施的拟议重新批准。
从综合炼钢、高炉 (BF)-碱性氧气转炉流程向温室气体排放更低的替代流程的转变是钢铁行业脱碳的一个发展趋势。直接还原铁 (DRI)-电弧炉 (EAF) 路线就是这样一种流程。然而,当使用传统上在高炉中加工的低品位、高脉石铁矿石时,DRI-EAF 路线效率低下,而高炉占世界铁矿石供应的绝大部分。以低排放流程有效加工高炉级铁矿石的能力对于全球钢铁行业脱碳至关重要。本研究建议在使用高炉级铁矿石时使用电炉来提高整体工艺产量和效率,并将其与已建立的 DRI-EAF 工艺进行了比较。
海洋生物多样性和矿石官员爱尔兰鲸鱼和海豚集团是爱尔兰在海洋环境中工作的总理。成立于1990年,IWDG在有效倡导鲸类(鲸鱼,海豚和海豚)及其栖息地方面建立了可靠的声誉。IWDG也是一个主要数据持有人,在鲸类动物上具有独特的数据集,我们用来支持保护行动和策略。IWDG目前有六名全职员工和八个服务提供商。我们希望招募全职IWDG海洋生物多样性和矿石官员,以与海洋生物多样性和离岸可再生能源(矿石)有关的IWDG和更广泛的Engo领域的能力。成功的候选人将协助制定IWDG保护政策,建立IWDG和IEN倡导能力,并协助提供IWDG战略。该职位由爱尔兰环境网络通过环境,气候和通信部门资助。根据政府计划,政策和立法(NMPF,MSFD,MAP ACT,OREDP II,DMAPS,DMAPS),在爱尔兰水域开发矿石将是一项巨大的雄心勃勃的事业,其长期目的是在2050年建造37GW的容量。在爱尔兰国家历史上史无前例的拟议工作规模,对海洋环境产生了深远的影响。海洋非政府组织的作用在最大程度地减少影响并确保通过与所有利益相关者,机构和普通公众的知情对话和沟通来提高和保护海洋生态系统的所有机会至关重要。该帖子将允许IWDG进一步建立关系,而IWDG在矿石发展与海洋生物多样性,尤其是鲸鱼,海豚和海豚之间的相交至关重要的领域中已经开始的关系。这个角色将吸引在海洋生物多样性和近海可再生能源方面具有强大背景的候选人。对环境影响评估和海洋空间规划以及对这些领域的政府政策的良好理解也很重要。职责:倡导
5个示例30 5.0矿石Web服务。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。33 5.1利率互换暴露,平面市场。。。。。。。。。。。。。。。。。33 5.2利率互换暴露,现实的市场。。。。。。。。。。。。。。。35 5.3欧洲交换曝光。。。。。。。。。。。。。。。。。。。。。。。。35 5.4百慕大交换暴露。。。。。。。。。。。。。。。。。。。。。 div>。 div>。 div>。 div>36 5.5可拨动的掉期暴露。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>37 5.6帽 /地板暴露。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>38 5.7 FX向前和FX选项曝光。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>39 5.8交叉汇率敞口,无FX重置。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>40 5.9跨货币掉期暴露,带有FX重置。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>40 5.10净设备,抵押品,XVA,XVA分配。。。。。。。。。。。。。41 5.11巴塞尔暴露措施。。。。。。。。。。。。。。。。。。。。。。。。。。。44 5.12长期模拟,具有地平移。。。。。。。。。。。。。。。。。45 5.13动态初始边距和MVA。。。。。。。。。。。。。。。。。。。。。。46 5.14最小的市场数据设置。。。。。。。。。。。。。。。。。。。。。。。。。。。。47 5.15灵敏度分析,应力测试和危险中的参数值。47 5.16股权导数暴露。。。。。。。。。。。。。。。。。。。。。。。。。51 5.17通货膨胀互换在道奇 - 卡因斯(Dodgson-Kainth)下。。。。。。。。。。。。。。52 5.18键和摊销结构。。。。。。。。。。。。。。。。。。。。。53 5.19交换定价带着微笑。。。。。。。。。。。。。。。。。。。。。。。。。54 5.20信用默认交换定价。。。。。。。。。。。。。。。。。。。。。。。。。54 5.21 CMS和CMS盖/地板定价。。。。。。。。。。。。。。。。。。。。。。55 5.22 apote敏感性分析带着微笑。。。。。。。。。。。。。。。。。。。55 5.23 FRA和平均OIS暴露。。。。。。。。。。。。。。。。。。。。。。。55 5.24商品衍生品,定价,灵敏度,暴露。。。。。。。。。。56 5.25 cms用(数字)盖/地板扩散。。。。。。。。。。。。。。。。。。。56
火成磷矿选矿后一般能产出比沉积磷矿更高的磷酸盐精矿(表A1)。尽管火成磷矿的平均P 2 O 5 含量低于沉积磷矿。例如,火成磷矿和沉积磷矿的全球平均P 2 O 5 分别为8.1 wt.%和21.3 wt.%(表A1)。但火成磷矿产出的可商品磷酸盐精矿(即选矿后的磷酸盐矿石)的平均P 2 O 5 含量明显高于沉积磷矿。例如,火成磷矿和沉积磷矿产出的可商品磷酸盐精矿的全球平均P 2 O 5 分别为36.9 wt.%和29.6 wt.%(表A1)。
盎司) 作业 Tujuh Bukit 金矿 1 2.0 0.35 78.7 0.40 20.1 0.32 100.9 0.38 1,235 73.8 0.43 1,020 重晶石 2 0.5 1.61 0.02 1.55 0.08 1.81 0.6 1.63 30 0.6 1.64 31 重晶石 2 1.6 0.54 4.2 0.63 0.01 0.19 5.8 0.61 113 8.9 0.52 149 总计 作业 1,378 1,199 项目 Tujuh Bukit 铜项目 1 755.1 0.66 982.4 0.37 1,737.5 0.50 27,898 1,705.6 0.50 27,360 Pani 金矿项目 1 253.7 0.74 49.5 0.54 303.1 0.70 6,864 263.6 0.75 6,351 Wetar (AIM) 2 1.0 0.59 18.8 0.48 1.1 0.08 20.9 0.46 310 26.7 0.35 300 项目总数 35,072 34,011 黄金矿产资源总量(千盎司) 36,450 35,210