Loading...
机构名称:
¥ 2.0

有效的矿物前景映射(MPM)依赖于机器学习(ML)模型从地球物理数据中提取有意义模式的能力。然而,在矿物探索中,与整体地质景观相比,鉴定矿藏的存在通常是罕见的事件。这种稀有性导致了高度不平衡的数据集,其中积极实例(矿化样品)的频率大大低于负面实例(非矿化样品)。不平衡的数据可能会使ML模型偏向多数类,从而导致对主要兴趣的少数类别(矿化样本)的预测不准确。为了应对这一挑战,我们在这项研究中提出了两级方法。在数据级别上,我们采用了在培训数据集上运行的不平衡数据处理技术并更改类分布。在算法级别上,我们调整了模型的决策阈值,以平衡误报和假否定性之间的交易。实验结果是根据芬兰拉普兰的地球物理数据收集的。数据集表现出明显的类别不平衡,包括17个正样本与1个。84×10 6负样本。我们研究了处理不平衡数据对四个ML模型的性能的影响,包括多层感知器(MLP),随机森林(RF),决策树(DT)和逻辑回归(LR)。从结果来看,我们发现MLP模型实现了最佳的总体表现,使用合成少数民族过采样方法,平衡数据的总准确度为97.13%。随机森林和DT也表现良好,精度分别为88.34%和89.35%。这项工作的实施方法是在QGI中集成为新工具包,称为MPM的EIS工具包1。

矿石地质评论

矿石地质评论PDF文件第1页

矿石地质评论PDF文件第2页

矿石地质评论PDF文件第3页

矿石地质评论PDF文件第4页

矿石地质评论PDF文件第5页

相关文件推荐

2021 年
¥1.0
2023 年
¥1.0
2023 年
¥1.0
2024 年
¥1.0
2023 年
¥1.0
2024 年
¥3.0
2021 年
¥1.0
1900 年
¥8.0
2023 年
¥1.0
2023 年
¥1.0
2025 年
¥1.0
2023 年
¥1.0
2024 年
¥1.0
2024 年
¥4.0
2023 年
¥9.0
2022 年
¥1.0
2022 年
¥4.0
2023 年
¥1.0
2021 年
¥1.0
2020 年
¥1.0
2024 年
¥1.0
2020 年
¥2.0
2024 年
¥2.0
2024 年
¥1.0
2024 年
¥1.0
2020 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0