摘要:用于3D体积生成和重建的生成对抗网络(GAN),例如形状产生,可视化,自动化设计,实时仿真和研究范围,在各个领域都受到了更多的关注。但是,诸如有限的培训数据,高计算成本和模式崩溃问题之类的挑战持续存在。我们建议将变异自动编码器(VAE)和gan结合起来,以发现增强的3D结构,并引入一种稳定且可扩展的渐进式增长方法,以生成和重建基于体素的基于体素的3D形状。级联结构的网络涉及生成器和鉴别器,从小型体素大小开始,并逐步添加图层,同时在每个新添加的层中使用地面标签监督歧视器,以建模更广阔的体素空间。我们的方法提高了收敛速度,并通过稳定的增长来提高生成的3D模型的质量,从而促进了复杂的体素级详细信息的准确表示。通过与现有方法的比较实验,我们证明了方法在评估体素质量,变化和多样性方面的有效性。生成的模型在3D评估指标和视觉质量中表现出提高的准确性,使它们在包括虚拟现实,元评估和游戏在内的各个领域都很有价值。
在生物信息学中,蛋白质二级结构预测在理解蛋白质功能和相互作用中起着重要作用。本研究介绍了TE_SS方法,该方法使用基于变压器编码的模型和ANKH蛋白质语言模型来预测蛋白质二级结构。根据蛋白质的二级结构(DSSP)版本4。使用各种数据集对模型的性能进行了严格评估。此外,本研究还将模型与八个结构类预测中的最新方法进行了比较。调查结果表明,TE_SS在九级和三类结构预测中表现出色,同时还表现出八类类别的熟练程度。这是由于其在QS和SOV评估指标中的性能而强调的,这证明了其识别复杂蛋白质序列模式的能力。此进步为蛋白质结构分析提供了重要的工具,从而丰富了生物信息学领域。
在线工具有意义的活动,并表示希望拥有在线和面对面选项的愿望。一些参与者描述了在限制期间参加各种在线社交团体活动的参与,例如参加“通过Zoom参加Zumba课程”(P6)。随着限制的逐渐缓解,其中一些活动仍在网上继续进行。p14说:“我们曾经每月进行一次讲座,他们再也没有回到面对面。从那以后一直在线。”许多参与者享受这些在线机会提供的便利,尤其是在特殊情况下正如P4所说:“下雨或10度时,我不可能在公园里做瑜伽”。P5说:“这对人有帮助
自我监督的学习吸引了越来越多的关注,因为它在没有注释的情况下从数据中学习了数据驱动的代表。基于视觉变压器的自动编码器(VIT-AE)(He等人,2021)是一种最近的自我监督的学习技术,它采用补丁掩盖策略来学习有意义的潜在空间。在本文中,我们专注于改善VIT-AE(绰号为VIT-AE ++),以更有效地表示2D和3D医疗信息。我们提出了两个新的损失功能,以增强训练阶段的表示。第一个损失术语旨在通过考虑建立依赖性并间接改善表示形式来改善自我重建。第二损失项的利用对比损失,以直接从两个随机掩盖的视图中优化表示形式。作为独立的贡献,我们将Vit-ae ++扩展到3D fash-im,以进行体积医学图像。我们在自然图像和医学图像上广泛评估VIT-AE ++,这表明对香草Vit-Ae的持续改善及其优于其他对比学习方法。我们的代码可在https://github.com/chinmay5/vit_ae_plus_plus.git关键字:表示;自学学习;蒙版视觉变压器
合成生物学应用了电气工程和信息处理的概念,赋予细胞计算功能。将底层分子成分转移到材料中,并根据受电子电路板启发的拓扑结构进行连接,已经产生了执行选定计算操作的材料系统。然而,现有构建块的有限功能限制了将高级信息处理电路实现到材料中。在这里,设计了一组基于蛋白酶的生物混合模块,其生物活性可以被诱导或抑制。在定量数学模型的指导下,遵循设计-构建-测试-学习 (DBTL) 循环,模块根据受电子信号解码器启发的电路拓扑进行连接,这是信息处理的基本主题。设计了一个 2 输入/4 输出二进制解码器,用于检测材料框架中的两个小分子,这些小分子可以以不同的蛋白酶活性形式执行受调节的输出。这里展示的智能材料系统具有很强的模块化,可用于生物分子信息处理,例如在高级生物传感或药物输送应用中。
摘要:音乐和艺术的生成AI模型越来越复杂且难以理解。Exable AI(XAI)的领域旨在使人们更容易理解神经网络等复杂而不透明的AI模型。使生成AI模型更易于理解的一种方法是将少数具有语义上有意义的属性施加在一般的AI模型上。本文对影响的影响进行了系统的检查,即变异自动编码器模型的不同组合(MeasureVae和Eversarialvae),AI模型中潜在空间的配置(4至256个潜在维度)(从4到256个潜在维度),以及训练数据集(训练数据集(训练数据集)(爱尔兰民间,土耳其民间,经典和流行音乐)在2或4含义上有着2或4含义于音乐上的音乐表演,这是有意义的。迄今为止,在此类级别的细节级别上没有进行此类模型的系统比较。我们的发现表明,与对抗性属性具有更好的音乐属性独立性相比,Measurevae具有更好的重建性能。的结果表明,Measurevae能够通过相互可靠的音乐控制层面来创造音乐流派的音乐,并以低复杂性音乐(例如流行音乐)的表现最好。我们建议32或64个潜在的维度空间对于使用Measurevae跨流派产生音乐时的4个正则化尺寸是最佳的。我们的最终是对音乐的最新生成AI模型的配置的第一个详细比较,可用于帮助选择和配置AI模型,音乐功能和数据集,以实现更易于理解的音乐。
摘要 - 深度学习模型最近在许多分类任务上表现出色。深度神经网络的出色表现取决于大量的训练数据,同时必须具有相等的类别分布才能有效。但是,在大多数现实世界中,标记的数据可能受到类别之间高不平衡比率的限制,因此,大多数分类算法的学习过程受到不利影响,从而导致预测和性能较低。三种主要方法解决了不平衡学习的问题,即数据级,算法级别和混合方法,这些方法结合了上述两种方法。数据生成方法通常基于生成的对抗网络,这些网络需要大量的数据,而模型级别的方法需要广泛的领域专家知识来制定学习目标,从而在没有此类知识的情况下对用户访问较差。此外,这些方法中的绝大多数被设计和应用于成像应用,更少的时间序列,并且对它们都极为罕见。为了解决上述问题,我们介绍了Genda,Genda是一种基于生成邻域的Deep AutoCoder,它在设计方面既简单又有效,并且可以成功地应用于图像和时间序列数据。genda基于学习潜在
由于元件尺寸极小且功耗巨大,基于互补金属氧化物半导体 (CMOS) 技术的器件性能有限。确实,许多研究人员正在考虑如何使用低功耗方法在纳米级构建复杂的逻辑电路。为了降低设计密度并实现高速切换,有必要考虑 CMOS 替代品。量子点细胞自动机 (QCA) 是一种新型无晶体管范例,可用于创建具有高密度和太赫兹速度切换的纳米级器件。有许多参考文献 [1-3] 深入探讨了实验特性和物理实现(金属岛、半导体、磁性和分子 QCA)。第一个基于原始材料的功能量子单元刚刚建成 [4]。CMOS 技术的一个问题是它倾向于耗散大量电能。借助可逆计算,可以防止计算过程中的能量损失,这已被提出 [5]。研究证实了这一点。在可逆逻辑中,可逆门起着关键作用。研究界已提出了几种类型的可逆门 [5]。Toffoli 门因其可执行多种任务而得到广泛应用 [6-9]。
- Dr. Anirban Bandyopadhyay IEEE Fellow, Senior Director of Strategic Applications, Mobility & Wireless Infrastructure, GLOBALFOUNDRIES, USA ( Acronym: LTP: Lightwave Technologies and Photonics, NMD : Nanomaterials and Semiconductor Devices, VLSI: Very Large Scale Integrated Circuits, QCT: Quantum Computing and Techniques, WCOM: Wireless communications, MWRT:微波和雷达技术,AEP:天线和电磁繁殖,CAS:计算机应用和信号处理,SSC:太空科学和通信),1:Vivekananda Hall(1 ST楼层),2楼Hall 2:Shivananda Hall(1 ST楼),Hall 3:Premananda Hall(1 St Floorananda Hall(1 St Floore),
设计只能与其数学表示一样好。在工程设计优化中,所选的参数化方法可以对结果产生重大影响。本文介绍了一种利用变异自动编码器(VAE)的翼型设计参数化的新方法,这是一类以降低维数的熟练程度而闻名的神经网络。但是,VAE的重大挑战是编码潜在空间的解释性。这项工作旨在通过创建具有可解释潜在空间的网络来解决此问题,从而产生人类可以理解的参数。使用综合的UIUC机翼数据库评估了这种方法的有效性,该数据库提供了多种式机翼形状供分析。我们表明,VAE可以成功提取翼型几何形状的关键特征,并使用六个参数对其进行参数化,这些特征以设计器可以理解的方式显示与机翼属性的明显相关性。此外,它可以平滑地插入数据点,从而产生新的机翼,从而提供实用且可解释的机翼参数化。