国家 / 制造商 美国 / IMS-AMCO 美国 / Equipto 美国 / EMPrimus 韩国 / ETRI 研究所
1 摘要 — 基于超快光电探测器中的光外差(光)混合的 THz 源非常有前景,因为它们在室温下工作,可能结构紧凑、成本高效,并且最重要的是频率可调性广。然而,它们的广泛使用目前受到 THz 频率下 µW 范围的可用功率水平的阻碍。我们在此介绍一种行波结构,其 THz 频率下的相干长度为毫米级,为大有源面积(~4000 µm 2 )光混合设备开辟了道路,该设备能够处理超过 1 W 的光泵浦功率,远远超出了使用小有源面积(<50 µm 2 )的标准集总元件设备的能力,需要保持与 THz 操作兼容的电容水平(<10 fF)。它基于氮化硅波导,该波导耦合到嵌入共面波导中的膜支撑低温生长 GaAs 光电导体。根据本研究详细阐述的该器件的光电子模型,预计毫瓦级功率可达到 1 THz,甚至高于 1 µW,最高可达 4 THz。实验中,使用两个 780 nm-DFB 激光器产生的拍音测量 1 毫米长结构的频率响应,最高可达 100 GHz,清楚地显示了预期的行波特征,即当反向行波的贡献完全消除时,衰减 6 dB,最终达到 ~50 GHz,随后达到 ~100 GHz 的恒定水平。在行波状态下进行操作的实验演示是实现该概念在功率水平和频率带宽方面的最初承诺的第一步。
2023年5月,HYDIS联盟联合来自14个欧洲国家的19个合作伙伴和20多个分包商,在2023年欧洲防务基金框架内提交了一项用于对抗新兴高度复杂威胁的大气层内拦截器的架构和技术成熟度概念研究。2023年7月12日,欧盟委员会宣布已选定该项目并给予资助。该联盟由欧洲导弹集团 (MBDA) 协调,提出了 HYDIS²(高超音速防御拦截器研究)项目,该项目汇集了国防团体、机构、中小企业、中型企业和大学。该联盟汇集了整个欧盟最优秀的导弹专家。法国、德国、意大利和荷兰已签署意向书并就初步共同要求达成一致,确认了他们的支持和参与。 HYDIS 2 的目标是研究不同的拦截器概念并完善相关关键技术,以便提供最佳的反高超音速和反弹道拦截解决方案,满足四个成员国(法国、意大利、德国和荷兰)的需求,同时考虑到欧洲 TWISTER 能力计划。该项目是欧洲国家为保卫民众和武装部队的使命做出贡献的核心要素,特别是针对与弹道威胁相比具有根本性变化的新兴高超音速威胁。 HYDIS² 联盟汇集了来自 14 个国家的 19 个合作伙伴和 20 多个分包商。合作伙伴包括阿丽亚娜集团 (ArianeGroup)、AVIO、Avio Aero、Bayern-Chemie、CIRA、DLR、GKN Fokker、LYNRED、MBDA España、MBDA France、MBDA Germany、MBDA Italia、OHB System AG、ONERA、ROXEL France、THALES LAS France、TDW、THALES Dutch 和 TNO。 HYDIS² 参与了 AQUILA 项目,该项目为多个欧洲国家提出了反高超音速拦截器概念,同时还与其他 MBDA 防空产品一起开发了全球区域防御产品组合。
摘要 飞行颤振试验是任何新飞机项目认证过程不可或缺的一部分。颤振测试是扩展包线的主要条件。本文总结了自主研发战斗机的颤振试验项目,旨在批准其基准配置的作战飞行包线。颤振清除方法结合了飞行前颤振分析和飞行颤振测试。扩展至全包线是沿着恒定马赫数和/或恒定 CAS 线的离散步骤组合完成的。通过处理飞行颤振试验数据并确保阻尼系数满足基于适航标准得出的清除标准,计算各种全局飞机模式的频率和阻尼系数(%g),从而获得清除。试验结果表明,正如分析估计所预测的那样,飞行包线无颤振。从设计师的角度概述了颤振清除理念、试验程序和飞行试验期间遇到的挑战。
2022 年 7 月,中科院航天所研制的力建一号/中科一号甲 (ZK-1A) 火箭成功首飞。该运载火箭采用四级固体火箭(三级第一级:P71/P35/P10),升空质量 135 吨,高度 31 米,主直径 2.65 米,有效载荷能力 1500 公斤,可在 500 公里高度的 SSO 轨道上运行。中国航天科技集团公司研制的类似运载火箭捷龙三号或智龙三号已于 2022 年 12 月在驳船发射台上发射。它使用相同的电机。同月,中国航天科工集团公司研制的 KZ-11 运载火箭首飞,该火箭部分源自 DF31/41 导弹。该运载火箭升空质量 78 吨,直径 2.2 米,基于新型 P45 碳纤维弹壳第一级。不幸的是,第三级固体火箭发动机在首飞期间出现故障。
2022年3月7日,工业和信息化部发布《车联网网络安全与数据安全标准体系建设指南》(以下简称《指南》)。根据《指南》,到2023年底,初步建立车联网网络安全与数据安全标准体系。《指南》要求,重点围绕基础共性、终端及设备网络安全、网络通信安全、数据安全、应用服务安全、安全保障与支撑等,完成50项以上急需标准研制。到2025年,建立比较完善的车联网网络安全与数据安全标准体系。相关方要完成100项以上标准研制,提高细分领域标准覆盖率,增强标准服务能力,提升标准应用水平,支撑车联网产业安全健康发展。(更多)
吴亚祥 1,2 ,余田 3 ,张淼 1,2 ,余大全 3 ,广川二郎 4 ,刘庆火 5 1 厦门大学深圳研究院,深圳 518057,中国,miao@xmu.edu.cn* 2 厦门大学电磁学与声学研究所,厦门 361005,中国,miao@xmu.edu.cn* 3 微电子与集成电路系,厦门,中国。 4 东京工业大学电气电子工程系,日本东京。 5 杜克大学电气与计算机工程系,美国达勒姆。 摘要 - 本文提出了一种采用玻璃微加工技术设计的 W 波段 16×16 单元共馈空气填充波导缝隙阵列天线。该天线由五层玻璃晶片层压而成。创新性地采用玻璃通孔(TGV)技术制作各层,该技术通过激光诱导深刻蚀工艺实现,并已初步应用于先进封装领域。根据湿法刻蚀工艺,在玻璃晶圆设计时考虑了10°的锥角。除了对天线进行电磁分析外,还对其力学和热学特性进行了仿真分析,以确保玻璃晶圆键合成功。实验结果表明,在中心频率94 GHz处天线增益为30.3 dBi,在W波段,当天线增益高于30 dBi时,带宽为13.3%。
1 拉夫利专业大学药学院,帕格瓦拉 144411,印度 2 提什克国际大学药学院生药学系,埃尔比勒 4401,伊拉克 3 沙克拉大学应用医学科学学院医学实验室系,沙克拉 11961,沙特阿拉伯 4 沙克拉大学药学院药学实践系,沙克拉 11961,沙特阿拉伯 5 悉尼科技大学澳大利亚补充和综合医学研究中心健康学院,澳大利亚新南威尔士州 Ultimo 2007,澳大利亚 6 苏雷什吉安维哈尔大学药学院,斋浦尔 Jagatpura Mahal Road 302017,印度 7 萨维塔大学萨维塔医学和技术科学研究所萨维塔牙科学院药理学系,钦奈 602105,印度北阿坎德邦药物科学研究所,北阿坎德邦大学,德拉敦 248007,印度 9 药学学科,悉尼科技大学健康研究生院,Ultimo,新南威尔士州 2007,澳大利亚 * 通讯地址:singhsachin23@gmail.com 或 sachin.16030@lpu.co.in;电话:+91-9888720835
2009年颁布、2015年修订的空间碎片减缓与防护管理办法 规范中国航天发射和微小卫星研制 在役火箭上面级钝化处理 ISO正式发布中国2021年提出的碎片减缓标准20893:2021