研究成果概要(中文):在本研究中,我们开发并评估了模拟大脑信息处理机制的新型计算模型。利用结合脉冲神经网络和储层计算的模型,我们分析了培养神经回路的信息处理特性。此外,通过对机器人的连续值控制和利用预测编码的强化学习模型进行实验,我们证实了高效行动规划的实现和学习成本的降低。这些发现有助于人工智能和机器人控制技术的进步。
近年来,由对抗生素产生耐药性的细菌所导致的死亡人数不断增加,已成为全球性问题。预计到2050年,耐药细菌导致的死亡人数将达到每年1000万人(图1)。使用新抗生素治疗很困难,有必要开发抗生素疗法以外的治疗方法。作为抗生素治疗的替代方案,人们尝试开发噬菌体疗法,该疗法利用噬菌体(噬菌体),即专门杀死细菌的病毒。然而,以目前的噬菌体治疗技术,很难可靠地选择能够杀死感染患者细菌的噬菌体并用于治疗,而噬菌体治疗的最大障碍是施用噬菌体的治疗效果的不确定性。因此,本研究尝试构建一种具有增强杀菌活性的改良噬菌体,以提高噬菌体治疗的治疗效果。噬菌体基因组中,除了形成噬菌体衣壳、尾巴等外骨骼的基因、将噬菌体复制基因组包装到衣壳中的终止酶等已知基因外,还含有许多功能未知的基因。申请人假设,在这些功能未知的基因中,可能存在一些基因,其缺失可以提高细菌感染的效率。基于这个理念,我们产生了通过突变或删除噬菌体基因来寻找突变噬菌体以提高杀菌活性的想法。 2.研究目标 本研究通过修饰噬菌体基因组,寻找通过突变或缺失增强杀菌活性的噬菌体基因,以提高噬菌体的杀菌活性,从而影响噬菌体治疗的治疗效果。 3.研究方法 1)噬菌体随机突变
研究成果概要(中文):MIBP1 (HIVEP2) 基因编码一种 270 kDa 的蛋白质,通过与特定 DNA 序列结合,可充当转录因子。MIBP1 基因的功能丧失突变与智力障碍有关,这表明 MIBP1 对大脑的正常发育和功能至关重要。为了确定 MIBP1 蛋白转录调控的靶基因,我们尝试通过对各种细胞系进行基因组编辑,将 FLAG 标签序列插入内源性 MIBP1 基因。已建立的细胞系之一 M15 源自 HCT116 结肠癌细胞,具有野生型和编辑后的等位基因。TNF-alpha 治疗后,编辑后的等位基因和野生型等位基因均立即诱导 MIBP1 表达。mRNA 表达增加伴随着 FLAG 标记的 MIBP1 蛋白表达增强。基因组编辑的结果是,观察到了 mRNA 稳定性的变化。
我们研究部署地热能储存的多能源系统的最佳运行,以应对供暖和制冷需求的季节性变化。我们通过开发一个优化模型来实现这一点,该模型通过考虑物理系统的非线性,以及捕捉能源转换、储存和消耗的短期和长期动态,在最先进的基础上进行了改进。该算法旨在最大限度地减少系统的二氧化碳排放量,同时满足给定终端用户的供暖和制冷需求,并确定系统的最佳运行,即通过网络循环的水的质量流速和温度,考虑到地热田温度随时间的变化。该优化模型是参考现实世界的应用而开发的,即安装在瑞士苏黎世联邦理工学院的无能电网。在这里,基于化石燃料的集中供暖和制冷供应由一个动态地下网络连接,地热田作为能源和储存,并满足需要供暖和制冷能源的终端用户的需求。与使用基于集中供热和制冷的传统系统相比,所提出的优化算法可将大学校园的二氧化碳排放量减少高达 87%。这比当前运营策略实现的 72% 减排效果更好。此外,对系统的分析可以得出设计指南并解释系统运行背后的原理。该研究强调了结合每日和季节性储能对于实现低碳能源系统的重要性。
格式 C-19、F-19-1、Z-19(通用)1.研究初始背景 (1)在养殖虎斑河豚时,每只虎斑河豚需剪牙1-2次,防止其被咬而死亡或掉鳍,降低鱼的商业价值。牙齿切割工序由熟练的人员逐一进行,因此非常繁琐。此外,还对鱼造成负担,包括麻醉和术后需要治愈嘴部周围的伤口。从生产率和动物福利的角度来看,希望制定措施来减轻这项工作的负担。 在虎斑河豚养殖中,一般以颗粒饲料作为食物,因此不需要用大牙齿来咬碎壳或撕碎肉。即使它们的牙齿发育不全,但由于它们能够吸入和食用复合饲料,因此它们能够充分生长。另一方面,如果养殖的虎斑河豚从笼子里逃出到海里,牙齿发育不全的个体咬合力会降低,从而降低它们在野外捕食的能力。因此,它们的生存能力将低于野生鱼类,也更难以繁衍下一代。这被认为有助于防止养殖鱼类的遗传偏差基因传播到自然界,因此预计在保护遗传资源方面具有重要价值。 硬骨鱼牙齿和哺乳动物牙齿被认为是生物体产生的最坚硬的组织结构。这两种牙齿都具有功能和形态相似的最外层结构,称为牙釉质(硬骨鱼)和牙釉质(哺乳动物)。此前人们认为,虽然硬骨鱼的牙齿与哺乳动物的牙齿在形态上相似,但由于两者的晶体结构不同,且牙齿中的组织来源于不同的结缔组织,因此它们是分别进化的类似器官(参考文献1)。但是,2005年,美国发现了与河豚门牙形成有关的一个基因群,即分泌性钙结合磷蛋白(SCPP)的存在(参考文献2)。通过分子进化分析发现,该基因群是所有脊椎动物牙齿在进化过程中共同参与的牙齿组织矿化的主要基因群(参考文献3)。 (2)在个体中,单碱基替换突变有:1.通过在蛋白质编码区创建终止密码子来抑制基因功能;2.通过氨基酸替代来降低或改变蛋白质的功能,3.人们认为表达调控区的突变会导致基因表达的增加或减少。因此,人工诱导单碱基替换突变的技术是分析基因功能的技术之一。 此前,我们已开发出利用化学诱变剂诱发单碱基置换突变的TILLING法,从适用于小型养殖鱼的传统方法(参考文献4~7),发展成为适用于养殖鱼精子和卵子的安全实用的突变引入技术(突变引入率为0.4%)(参考文献7)。利用该技术,对约300尾突变的虎斑河豚进行了9个SCPP基因突变的有无检测,发现了数尾SCPP2基因氨基酸取代的突变个体,但并未观察到牙齿缺损等明显症状。 近年来,基因组编辑技术作为一种可以针对特定基因引入突变的技术,在育种领域受到广泛关注。其中,CRISPR方法不仅比以往的ZFN、TALEN方法实施效果显著提高,而且操作也相对简单,目前已在多个领域得到应用并有报道结果(参考文献8)。在日本,真鲷和虎河豚是首批由民间企业上市的基因组编辑养殖鱼。预计未来基因组编辑鱼在水产养殖中的应用将变得更加广泛。 因此,我们开展了这个项目,因为我们认为使用 CRISPR/Cas 系统(最通用的基因组编辑技术,可以直接针对特定基因的碱基序列)一次性将突变引入所有目标 SCPP 基因是有效的。 2.研究目标:(1)利用突变导入技术CRISPR/Cas系统,对9种门牙形成基因同时导入多种突变,并通过对各个个体门牙的形态分析,识别出在虎斑河豚门牙形成过程中起关键作用的基因。 (2)为了减少今后虎河豚养殖中所需的切牙工作量,我们将通过基因功能分析培育出门牙形成率低的虎河豚个体,为生产门牙形成率低的虎河豚品种奠定基础(图1)。
研究成果概要(中文):首席研究员此前已证明,怀孕小鼠肠道细菌的紊乱会影响出生后的大脑发育,从而导致后代的行为变化(Tochitani,2016:紊乱的母体肠道菌群模型)。在本研究中,我们利用这种紊乱的母体肠道菌群模型,研究了紊乱的母体肠道菌群如何影响出生后早期后代肠道菌群的建立。结果表明,后代的肠道菌群紧密继承了母体肠道菌群紊乱的特征。然而,我们还发现,一些在紊乱的母体肠道菌群中表现出高相对丰度的细菌属在后代中生长受到抑制。这表明肠道菌群从母亲到后代的传递取决于细菌分类。
b“全球对化石燃料枯竭和相关环境恶化的担忧刺激了人们对可再生和清洁能源的探索和利用进行了大量研究。能量存储和能量转换是当今可持续和绿色能源科学中最重要的两项技术,并在日常应用中引起了极大的关注。迄今为止,大量新型纳米材料已被广泛探索用于这些与能源相关的领域,然而,每种材料都有自己的问题,限制了它们满足高性能能量存储和转换设备要求的能力。为了满足未来与能源相关的应用的高技术要求,迫切需要开发先进的功能材料。在此,本期特刊旨在涵盖原创研究成果、简短通讯和多篇评论,内容涉及先进异质结构材料的合理设计和可控合成的创新方法及其在能源相关领域(如可充电电池、超级电容器和催化等)的吸引人的应用。”
以下列出的论文和预印本由 CVD-COVID-UK/COVID-IMPACT 联盟制作,由 BHF 数据科学中心提供支持。根据联盟的原则(基于协作、透明和包容的精神),所有相关分析计划、协议、代码、表型代码列表和报告均通过中心在 HDR UK Gateway 上的收藏、中心 GitHub 组织中的存储库以及通过开放获取出版物(通过以下链接)公开。已发表的论文/报告和预印本
SENATOR - 智能网络运营商平台,实现共享、集成和更可持续的城市货运物流 UNCHAIN - 城市物流和规划:预测城市货运的产生和需求,包括城市货运的数字化 DISCO - 数据驱动、集成、同步运输、协作和优化的城市货运元模型,用于新一代城市物流和规划,并在欧洲生活实验室共享数据 URBANE - 通过多方合作和 PI 启发的最后一英里交付,升级创新的绿色城市物流解决方案 DECARBOMILE - 使最后一英里物流脱碳的五大支柱 GREEN-LOG - 合作和互联的绿色交付解决方案,迈向优化零排放最后一英里物流时代
SENATOR - 智能网络运营商平台,实现共享、集成和更可持续的城市货运物流 UNCHAIN - 城市物流和规划:预测城市货运的产生和需求,包括城市货运的数字化 DISCO - 数据驱动、集成、同步运输、协作和优化的城市货运元模型,用于新一代城市物流和规划,并在欧洲生活实验室共享数据 URBANE - 通过多方合作和 PI 启发的最后一英里交付,升级创新的绿色城市物流解决方案 DECARBOMILE - 最后一英里物流脱碳的五大支柱 GREEN-LOG - 合作和互联的绿色交付解决方案,迈向优化零排放最后一英里物流时代