2023 年 10 月 31 日——海洋生物学和生物海洋学及其管理研究生课程。介绍。海洋研究生课程的研究生...
NUT 5105当前在食品安全和营养(3个单位)开发批判性分析和战略思维技能方面的挑战,通过分析当前的文献和其他资源来探索食品行业遇到的各种挑战。科学证据和调节性问题,涉及诸如遗传修饰的食物,食物过敏原,食品供应的营养质量(例如,反式脂肪,钠,糖)等主题。新兴问题包括最小化抗微生物耐药性,微生物组研究对食品调节的影响,气候变化以及对纳米技术的粮食供应链和安全性的其他全球影响。情绪智力,压力管理和人际关系的概念在工作场所内建立食品安全文化。课程组件:讲座
19-Feb-2025 CPD-LG.46 26-Feb-2025 CPD-LG.46 12-Mar-2025 CPD-LG.46 19-Mar-2025 CPD-LG.46 26-Mar-2025 CPD-LG.46 2-Apr-2025 CPD-LG.46 9-Apr-2025 CPD-LG.46 16-Apr-2025 CPD-LG.46 23-Apr-2025 CPD-LG.46 30-Apr-2025 CPD-LG.46 20-Feb-2025 CPD-G.03 27-Feb-2025 CPD-G.03 6-Mar-2025 CPD-G.03 13-Mar-2025 CPD-G.03 20-Mar-2025 CPD-G.03 27-Mar-2025 CPD-G.03 3-Apr-2025 CPD-G.03 10-Apr-2025 CPD-G.03 17-Apr-2025 CPD-G.03 24-Apr-2025 CPD-G.03 21-Feb-2025 CPD-2.47 28-Feb-2025 CPD-2.47 7-Mar-2025 CPD-2.47 14-MAR-2025 CPD-2.47 28-MAR-2025 CPD-2.47 11-APR-2025 CPD-2.47 25-APR-2025 CPD-2.47 2-MAY-20225 CPD-2025 CPD-2.47 CPD-2.47 9-MAY-2025 CPD-2.47 16-MAY-201225 CPD.ING>
高等次考试或与任何科学学科 /家庭科学 /家庭科学 /护理 /(职业流)的任何科学学科 /家庭科学(职业流)进行的通行证,该学科 /化学 /化学 /生物学 /职业流与任何科学主题。
以下是截至2025年3月10日的信息。<注意点> 1与您的准主管联系,讨论您的研究兴趣并批准您的研究建议。通过将电子邮件发送到第7页之后列出的主管的电子邮件地址,与潜在主管进行初步联系。我们将仅响应与初始联系人相关的消息。通过向supoken-eng@list.waseda.jp发送电子邮件,以了解有关入学的问题。2在消息中,您应指示以下信息:
https://forms.office.com/r/zMmtK84AYs 32201 NURS 632 Mixed Methods Research 3 Hiro Kiyoshi-Teo W 0900-1150 SN 465 FTF 32202 NURS 633 Pro Seminar 1 Hiro Kiyoshi-Teo T 1300-1350 Online Online/Webex 32203 NURS 636 Inquiry and Proposal Development 2 Lyndsey安德森(Haerim Lee T)1430-1620 SN 215 ftf
■○→春季△→秋季☆→全年的学生能够阅读教学大纲并最终确定课程计划。[教学大纲提供了课程的轮廓和时间表。课程提纲:http://syllabus.shizuoka.ac.jp/]
20 B技术领域的技术B.Tech(纸质代码 - 英语-101,物理学-322,化学-306,生物学/生物科学/生物学学/生物化学/生物化学/生物技术-304) div>)
鉴于我们在大学悠久的卓越传统的中心地位,哈佛大学格里芬·GSAS仍然是诺贝尔奖获得者的遗憾也就不足为奇了。Gary Ruvkun,82博士,在10月获得2024年诺贝尔生理学或医学奖时,成为了最新的Hon-Ore。ruvkun因发现MicroRNA的贡献而获得了这种认可,这是一种新的微小RNA分子,在基因调节中起着至关重要的作用(请参见第5页上的更多信息)。我坚信是哈佛·格里芬GSA的独特教育环境,鼓励学生提出问题,协作和辩论 - 这是这种研究的范围,它继续改变了世界。我们继续进行两个旨在增强学术经验的项目,并确保我们的学生准备在毕业后承担各种职业的挑战。与研究生计划的会议讨论了GSAS录取和研究生教育(GAGE)报告的建议,其中包括入学,建议,培训等方面。这些交通的资源和工具的宝藏和工具得到了帮助,教师和学生的额外努力(TAP)积累了。从今年秋天开始,Tap团队实际上举行了研讨会,并亲自举办了研讨会,并提高了对教职员工和学生的牢固健康咨询关系的重要性(请参见第4页上的更多信息)。当我们开始春季学期时,这两个项目都将继续前进,我期待将来与您分享更多更新。今年春天将是校园里的另一个充满活力的季节,从校友日到哈佛视野研讨会,都有很多与我们的学生互动的机会。邀请仍然开放,与我一起去剑桥,亲眼目睹了哈佛大学格里芬·GSA(我们好奇,杰出的学生和校友)成为大学的心脏之心。
基于钒的Kagome超导体AV 3 SB 5(A = K,RB,CS)具有超导性和电荷排序之间的丰富相互作用。这些阶段可以通过施加静水压力来有效地分解。我将讨论我们通过压力下的运输电流探测正常状态和AV 3 SB 5的超导性的方法。磁取力最高〜31 t揭示了量子振荡,从而可以分析费米表面。尤其是,当电荷顺序被压力抑制时,大频率> 8000 t出现,从而揭示了重建前原始的费米表面[1,2]。在超导状态下,CSV 3 SB 5中的自我临界电流测量表现出可以通过无节结节的超导间隙来理解的温度依赖性,这与我们的发现对样品纯度不敏感[3]。最后,零温度极限处的自场临界电流显示在电荷顺序的边界附近也有巨大的增强,其中T C也得到了增强,暗示了电荷波动在超导性上的作用[4]。
