描述:本研讨会的主要目的是向参与者介绍开源计算机视觉模型用于分析相机陷阱图像的应用。该研讨会旨在提供动手经验,以获取免费的云计算资源来部署和解释这些模型,以增强野生动植物监测和研究。虽然相机陷阱可以进行全面的野生动植物监测,但尽管此任务的耗时,许多研究人员仍会手动查看相机陷阱图像。存在几种开源模型来自动化这些任务,但是很难实施这些模型并验证其性能。Western Ecosystems,Inc。(West)的机器学习团队擅长开发和部署来自相机陷阱图像,无人机镜头和声学数据的动物和栖息地检测的计算机视觉模型。我们期待有机会分享我们的专业知识,并通过使用尖端的计算机视觉技术来帮助推进野生动植物监测的领域。一些编程经验将有所帮助。参与者应尽可能带上笔记本电脑。
NAVFAC 开放环境修复资源 (OER2):确定 MEC/MPPEH 水下埋藏深度的方法军用弹药被发现在某些水下位置,这是历史处置活动以及实弹训练、测试和其他操作的结果。在水下环境中仍能发挥作用的射弹和其他弹药构成爆炸危险,可能会迁移,使人员接触到这些弹药。这种爆炸危险的管理很复杂,取决于特定地点的考虑因素,例如弹药类型、海洋环境、移动潜力以及人员如何接触和与弹药互动。本次网络研讨会的目的是总结为了解水下环境中弹药的移动性和埋藏而开发的科学。将介绍环境观测、弹药观测技术、移动性和埋藏现场观测、移动与埋藏的物理学以及埋藏的物理过程建模。演示将以将这些知识在现有场地的实际应用结束。 演讲者:Bryan Harre,NAVFAC EXWC 和 Joe Calantoni,美国 NRL 博士 日期:2022 年 11 月 9 日,星期三 时间:太平洋时间上午 11 点 | 美国东部时间下午 2 点 通过以下链接注册参加网络研讨会:https://einvitations.afit.edu/inv/anim.cfm?i=697664&k=0468450F7D53 如果您无法点击链接,请将地址复制并粘贴到您的网络浏览器中。 州际技术与监管委员会 (ITRC) 关于可持续弹性修复 (SRR) 的网络研讨会 极端天气事件会对修复措施保护人类健康和环境的能力产生不利影响。可持续弹性修复 (SRR) 被定义为“清理和再利用危险废物场地的优化解决方案,可限制负面影响、最大化社会和经济效益并增强对日益增加的威胁的抵御能力”。该网络研讨会介绍了一些工具,可帮助将可持续和有弹性的实践融入修复项目中。主题:可持续的弹性修复演讲者:ITRC 日期:2022 年 11 月 17 日时间:太平洋时间上午 10 点 | 美国东部时间下午 1 点通过以下链接注册参加 ITRC 网络研讨会:https://clu-in.org/conf/itrc/SRR/有关更多信息,请查看 ITRC 关于此主题的报告:https://srr-1.itrcweb.org/ RPM 培训活动主题的最后一次征集 RPM 培训主题的最后一次征集:现在到 2022 年 11 月 16 日链接:https://einvitations.afit.edu/inv/anim.cfm?i=699708&k=04684B0E7B5F RPM 培训日期更新:2023 年 3 月 14 日至 16 日*这与原始/预计日期不同* 正在评估场地,活动举办批准将决定最终日期和地点。
•某些人没有最小的症状。•具有全身特征的呼吸道症状(即涉及全身)。•在某些患者中,进展为病毒性肺炎或继发性细菌性肺炎。•在其他患者中,基本合并症或事件的降水恶化,例如
摘要:由于它们具有出色的学习有用表示的能力,在大型在线数据集中预先培训的神经网络最近已成为神经科学家的首选工具。相反,通过利用大规模的神经影像实验,我们表明我们可以采用随机初始化的神经网络,并训练它们直接预测fMRI记录,从而实现可以通过其他任务来操纵,解释和重新实现其他任务的功能性脑模型的构建。我们提出了一种自下而上的方法,该方法使用了观察大量自然图像的多个主题中收集的数据,我们使用它来发现高级视觉皮层中的语义选择性强大模式。我们还使用模型的预测来指导可以推动感兴趣大脑区域的新颖,分布图像的产生,并通过进一步的fMRI实验来验证对这些图像的响应。此外,我们证明了我们的脑信息模型可以提高不同的AI任务的性能,这表明用于预测不同大脑领域的表示形式具有特定的功能。这种方法建立在大脑和世界的综合模型上,这可能导致新型的脑部计算机接口。
气候变化增加了生物和非生物胁迫的发生,这是利用豆类潜在生产力和质量的关键制约因素,需要专门的研究和开发工作,利用组学资源和先进的育种技术,帮助快速及时地开发高产、适应气候、营养丰富的豆类作物,以提供粮食和营养安全。最近,豆类研究人员社区在传统和分子育种方面取得了显著成就,加速了豆类在质量和数量方面的遗传增益。研讨会的主要目的是为有兴趣应用各种分子和基因组工具开发适应气候和营养丰富的豆类作物的研究人员和教师提供培训。研讨会将涵盖以下主题:不同豆类作物基因组资源概述、各种分子育种方法,如标记辅助育种、全基因组关联研究、转录组分析、转基因和基因组编辑、DNA、RNA、蛋白质、矿物质、淀粉成分、抗营养因子等的提取和定量实践培训。
● 刺激技术创新 ● 利用小企业满足联邦研发需求 ● 培养和鼓励社会和经济弱势小企业以及 51% 由女性拥有和控制的企业参与技术创新 ● 增加私营部门对联邦研发创新的商业化,从而提高竞争力、生产力和经济增长
1. 简介 2024 年 3 月 30 日,吉隆坡大学 VLSI 与微电子研究小组组织了“使用分布式算术架构实现自适应滤波器”全国网络研讨会。网络研讨会旨在探讨分布式算术架构在实现自适应滤波器中的应用,并深入了解其应用和进步。 2. 目标:“使用分布式算术架构实现自适应滤波器”全国网络研讨会的目标是探索和阐明分布式算术架构在自适应滤波器实现中的应用。网络研讨会旨在让参与者全面了解在 VLSI 和微电子领域使用分布式算术架构的自适应滤波器的原理、技术和应用 3. 演讲者和主题 主旨演讲由 NIT Calicut 电子与计算机工程系助理教授 M Surya Prakash 博士发表。他的演讲重点是“使用分布式算术架构实现自适应滤波器”,深入了解了微电子和 VLSI 领域的复杂性和策略。重点是自适应滤波器。重点领域:了解自适应滤波器、探索分布式算术架构、实现技术、应用和优势、未来方向。 4. 描述:网络研讨会由 KL 大学 VLSI 和微电子研究小组组织,于 2024 年 3 月 30 日举行。NIT Calicut 的 ECE 系助理教授 M Surya Prakash 博士担任此次活动的特邀演讲嘉宾。Prakash 博士凭借其在该领域的专业知识,发表了一次富有启发性的演讲,涵盖了与自适应滤波器和分布式算术架构相关的各个方面。 5. 组织者 网络研讨会由 ECE 的 VLSI 和微电子研究小组组织,Fazal Noorbasha 博士和 K. Har Kishore 博士担任召集人。 K. Srinivasa Rao 博士和 Venkata Ratnam D 博士分别担任主席和联合主席,而 Suman Maloji 博士担任总主席。6. 主要亮点
自1993年以来,她一直在波士顿大学领导自己的研究团队。艾伦博士的研究集中在阐明酶机制以及对自然如何从现有蛋白质支架中发展新化学的理解。此外,艾伦博士试图通过发明和实施灯笼结合标签来探索蛋白质结构和功能的新工具。最近,她试图了解蛋白质 - 蛋白质结合相互作用的物理化学基础。艾伦博士在120多次期间曾是一名名为讲师和研讨会的演讲者,并主持了国家和国际会议。她的作品发表在130多种经过同行评审的文章中。Allen教授是ASBMB研究员,曾担任ASBMB的理事会,并担任ACS生物化学部的计划主席和顾问。 她很荣幸成为ASBMB生物化学和分子生物学委员会的妇女共同创始人。 在2022年,艾伦博士被ACS的生物化学划分被评为Abeles and Jencks生物学化学奖。Allen教授是ASBMB研究员,曾担任ASBMB的理事会,并担任ACS生物化学部的计划主席和顾问。她很荣幸成为ASBMB生物化学和分子生物学委员会的妇女共同创始人。在2022年,艾伦博士被ACS的生物化学划分被评为Abeles and Jencks生物学化学奖。
