Loading...
机构名称:
¥ 1.0

摘要:由于它们具有出色的学习有用表示的能力,在大型在线数据集中预先培训的神经网络最近已成为神经科学家的首选工具。相反,通过利用大规模的神经影像实验,我们表明我们可以采用随机初始化的神经网络,并训练它们直接预测fMRI记录,从而实现可以通过其他任务来操纵,解释和重新实现其他任务的功能性脑模型的构建。我们提出了一种自下而上的方法,该方法使用了观察大量自然图像的多个主题中收集的数据,我们使用它来发现高级视觉皮层中的语义选择性强大模式。我们还使用模型的预测来指导可以推动感兴趣大脑区域的新颖,分布图像的产生,并通过进一步的fMRI实验来验证对这些图像的响应。此外,我们证明了我们的脑信息模型可以提高不同的AI任务的性能,这表明用于预测不同大脑领域的表示形式具有特定的功能。这种方法建立在大脑和世界的综合模型上,这可能导致新型的脑部计算机接口。

研讨会系列,Flier-Leila Wehbe

研讨会系列,Flier-Leila WehbePDF文件第1页