锂硫 (Li-S) 电池被视为近期下一代锂电池的有希望的候选材料之一。然而,这些电池也存在某些缺点,例如由于多硫化物的溶解导致充电和放电过程中容量衰减迅速。本文成功合成了硫/金属氧化物 (TiO 2 和 SiO 2 ) 蛋黄壳结构,并利用该结构来克服这一问题并提高硫阴极材料的电化学性能。使用扫描电子显微镜 (SEM)、透射电子显微镜 (TEM) 和 X 射线衍射 (XRD) 技术对制备的材料进行了表征。结果表明,使用硫-SiO 2 和硫-TiO 2 蛋黄壳结构后电池性能显著提高。所得硫-TiO 2 电极具有较高的初始放电容量(>2000 mA h g −1 ),8 次充电/放电循环后的放电容量为 250 mA h g −1 ,库仑效率为 60% ,而硫-SiO 2 电极的初始放电容量低于硫-TiO 2 (>1000 mA h g −1 )。硫-SiO 2 电极在 8 次充电/放电循环后的放电容量为 200 mA h g −1 ,库仑效率约为 70%。所得恒电流结果表明硫-TiO 2 电极具有更强的防止硫及其中间反应产物溶解到电解质中的能力。
窑温 每个回转窑都应配备热扫描仪。它能全面反映窑壳的温度,使操作人员能够在温度过高时停窑,从而避免窑壳开裂和变形。大多数窑炉已配备窑壳扫描仪,但有时停窑的决定为时已晚。当窑壳温度尽管用风扇降温但仍升至 450˚C 以上时,就需要停窑。向窑壳上喷洒大量水也不是一个好的解决方案,因为热冲击会导致窑壳开裂。新型扫描仪应能够连接到控制系统,其中 AI 可以帮助识别“应该做和不应该做的事情”,以防止出现不良的温度模式。
磨料 005 05 研磨设备和工具 005 14 涂层磨料:布、纤维、砂纸等。005 21 金属喷砂磨料 005 28 金属喷砂磨料 005 42 固体磨料:轮子、石头等。005 56 翻滚磨料(轮子) 005 63 研磨和抛光化合物:碳化硅、金刚石等。(有关阀门研磨化合物,请参阅 075 类) 005 70 浮石 005 75 再生磨料产品和用品 005 84 钢丝绒、铝绒、铜绒和铅绒吸音砖、绝缘材料及用品 010 05 吸音砖,所有类型(包括再生类型) 010 08 吸音砖配件:槽道、格栅、安装硬件、杆、滑轨、悬挂支架、三通、墙角和电线 010 09 吸音砖绝缘材料 010 11 吸音砖粘合剂和胶粘剂 010 14 绝缘粘合剂和胶粘剂 010 17 铝箔等010 30 带、夹子和电线(用于管道绝缘) 010 38 夹子、销钉等(用于管道绝缘) 010 41 软木:块、板、片等010 45 外部绝缘和饰面系统 010 53 玻璃纤维:棉絮、毯子和卷材 010 56 泡沫玻璃:块、片等。010 57 现场发泡绝缘材料:酚醛树脂、聚氨酯等。010 59 泡沫塑料:块、板、片等。010 62 内部绝缘材料 010 63 吹制绝缘材料 010 64 松散填充绝缘材料 010 65 护套(用于绝缘):帆布、奥斯纳堡等。010 70 氧化镁:块、片等。010 72 矿物羊毛:毯子、块、板 010 75 油漆、底漆、密封剂等。(用于绝缘) 010 76 纸质绝缘材料(纤维素等)010 78 管道和管材绝缘,所有类型 010 81 预制绝缘,所有类型(用于弯头、三通、阀门等)
。cc-by-nd 4.0国际许可在A未获得Peer Review的认证)是作者/资助者,他已授予Biorxiv的许可证,以永久显示预印本。它是制作
研究了废推进剂浸渍的耐火粘土砖样品在不同推进剂百分比、温度扫描和推进剂百分比下的热导率、热扩散率和比热的变化。将 0.0%、2.5%、5.0% 和 7.5% 重量的推进剂添加到砖坯中,并对直径为 12.6+0.1 毫米、厚度为 2-3 毫米的样品进行水平和垂直方向的烘烤。使用激光闪光技术从 30oC 到 100oC 进行温度扫描,以表征砖的热扩散率和比热。推进剂浸渍重量越高,热扩散率越低,比热容越大,热导率越低。对于相同的 7.5% 推进剂浸渍砖,垂直烘烤比水平烘烤具有更好的隔热性能。观察到参考砖的平均热导率是 0.7 W/mK。砖块中 7.5% 重量的推进剂浸渍可能导致垂直烘烤期间的热导率低于 0.5 W/mK。这种大幅减少无疑为建筑带来了绝缘解决方案,并带来了环保的处理解决方案。
摘要:Bivalve Molluscan壳的鱼被消耗了几个世纪。作为过滤器,它们可能会自然或通过排放人或动物污水来生物累积的一些微生物。尽管制定了法规,以避免壳鱼中的微生物污染,但仍会发生人类暴发。提供了概述显示它们对疾病的影响后,该评论的目的是强调在壳细菌中检测到的细菌或肠道病毒的多样性,包括新兴的病原体。在对可用方法及其局限性的批判性讨论之后,我们使用基因组学预测病原体的出现的技术发展的兴趣。在接下来的几年中,需要进行进一步的研究,并需要开发方法,以设计监视的未来并帮助风险评估研究,并最终目的是保护消费者并增强双壳软体动物壳的微生物安全性作为健康食品。
这项研究研究了Solen sp。与壳尺寸,新鲜重量和环境压力有关。总共分析了105个剃须刀蛤,重点是壳宽度,长度,高度和CI(CI-1和CI-2)。结果表明,壳的右侧(width-1,长度1)和左侧(width-2,长度-2)边之间存在显着差异,对配对测量值观察到强的正相关(宽度为0.996,长度为r = 0.993)。尽管这种对称性,但平均值和可变性的轻微不对称表明在生长过程中的环境影响。壳高度与CI(CI-1:R = -0.623; CI-2:R = -0.640)表现出很强的负相关性,表明垂直壳的生长与生物量的能量分配之间的权衡。多个线性回归分析表明,壳的高度和长度对新鲜重量产生了最大的负面影响,而CI对新鲜重量产生了积极影响(CI-1:27.6,CI-2:26.1)。这些发现将壳的生长不对称和CI与水质扰动和沿海环境压力相关联,例如盐度变化,沉积和富营养化。此外,与气候变化相关的因素,包括温度升高和海洋酸化,可能通过改变碳酸钙沉积和代谢能量分配来加剧这些影响。这项研究强调了Solen sp的潜在用途。作为环境健康的生物指导者,并强调了对长期监测和微观结构分析的未来研究的必要性,以更好地了解环境条件下的双壳弹性。
超弹性圆柱壳在加压下表现出的显著变形使其成为可编程充气结构的理想平台。如果施加负压,圆柱壳将弯曲,从而产生一系列丰富的变形模式,由于选择了超弹性材料,所有这些变形模式都可以完全恢复。虽然真空下的初始屈曲事件很容易理解,但这里探索了后屈曲状态,并确定了设计空间中发生耦合扭曲收缩变形模式的区域;通过仔细控制我们的均质壳的几何形状,可以控制收缩与扭曲的比例。此外,可以通过改变我们壳的圆周厚度来解锁作为后屈曲变形模式的弯曲。由于这些软壳可以从屈曲引起的显著变形中完全恢复,因此可以利用这些不稳定性驱动的变形来构建能够通过单个驱动输入进行可编程运动序列的软机器。