摘要摩尔的定律终于接近了最终的物理限制,因为最先进的微处理器现在的晶体管在频道中仅宽14纳米,并且微电子行业已经进入了后期的时代。将需要真正的新颖物理学来通过开发新材料,原理,结构,设备和新型体系结构来扩展它。鉴于硅的成功主要从其高质量的本地氧化物SIO2和现有的广大专业知识和基础设施中受益,因此硅的完全替代很快就不太可能在很快发生。在这次演讲中,我将介绍我们最近对基于硅后的技术的半导体物理学的研究(3)GE孔自旋量子材料的理论设计,以加快量子操作的速度超过GHz。参考文献[1] Ruyue Cao,Qiao-lin Yang,Hui-xiong Deng*,Su-huai Wei*,John Robertson和Jun-Wei Luo*,通过降低原子间键合强度,降低光学声子,自然634,1080(2024)。[2] G. Wang,Z.G。Song*,Jun-Wei Luo*和S.S. Li,物理学。修订版b 105,165308(2022)。[3] J.X.Xiong,S。Guan *,Jun-Wei Luo *和S.S. Li,物理。修订版b 103,085309(2021)。[4] Jun-Wei Luo *,S.S。Li和A. Zunger *,物理。修订版Lett。Lett。119,126401(2017)。 查询:3943 6303119,126401(2017)。查询:3943 6303
也是由该公共元素硅制成的另一种光伏电池,但在这种情况下,没有机会慢慢生长成晶体结构。没有晶体结构的材料称为无定形玻璃是无定形材料的一个很好的例子。无定形硅具有轻松制作成极薄的层或膜的优点,可以切割比晶硅薄得多。使用较少的硅(以及能量),它们可以便宜。通过将硅沉积在柔性金属箔甚至塑料上,也可以使它们变得柔性,这与脆性结晶硅不同。薄膜硅的缺点是,您需要更多的薄膜硅面积来产生与晶硅相同的电力。
非晶态固体材料因其离子电导率、稳定性和可加工性等优良特性,在储能领域引起了越来越多的关注。然而,与块体晶体材料相比,密度泛函理论 (DFT) 计算的规模限制和实验方法的分辨率限制阻碍了对这些高度复杂亚稳态系统的基本理解。为了填补知识空白并指导非晶态电池材料和界面的合理设计,我们提出了一个基于机器学习的原子间势的分子动力学 (MD) 框架,该框架经过动态训练,以研究非晶态固体电解质 Li 3 PS 4 及其保护涂层非晶态 Li 3 B 11 O 18 。使用机器学习势使我们能够在 DFT 无法访问的时间和长度尺度上模拟材料,同时保持接近 DFT 水平的精度。这种方法使我们能够计算非晶化能、非晶-非晶界面能以及界面对锂离子电导率的影响。这项研究证明了主动学习的原子间势在将从头算建模的应用扩展到更复杂和现实的系统(例如非晶材料和界面)方面的良好作用。
硅光子学已成为一个有前途的平台,可满足下一代数据中心、先进计算以及 5G/6G 网络和传感器对高速数据传输、低功耗和低延迟日益增长的需求。硅光子学市场在过去几年中大幅扩张,预计未来五年的复合年增长率 (CAGR) 将达到 26.8% [1]。尽管通过使用标准半导体量产工艺和现有基础设施,硅光子学的晶圆制造能力已经非常先进,但硅光子学的封装和测试仍然落后,缺乏生产可扩展性,这限制了硅光子学的更广泛部署。本文介绍了光子凸块技术,这是一种新的晶圆级光学元件实现,具有可扩展的封装和测试能力。光子凸块相当于电焊凸块,有可能将硅光子学与标准半导体晶圆制造和封装线结合起来,从而弥合硅光子学向大批量制造的差距。
创新、小巧、快速、精确。并且具有一定的节能效果。这些是许多先进技术和微型部件所需的要素。为了继续快速的技术进步,弗劳恩霍夫光机电系统研究所还向小型企业提供其研究组合、最先进的技术和设备以及 200 毫米和 300 毫米洁净室。 200 毫米晶圆上的 MEMS 技术和设备 在弗劳恩霍夫光机电系统研究所,MEMS 技术的技术开发和支持贯穿整个价值链:从单个工艺到技术模块再到完整技术,以及洁净室设备的工艺技术支持。i. 成功开发后,该研究所提供试生产或技术转让支持。弗劳恩霍夫光机电系统研究所涵盖的技术成熟度 (TRL) 为 3 至 8。因此,初创企业、中小型企业和没有自己工厂的公司尤其可以从低投资成本中受益。在传感器和执行器领域,弗劳恩霍夫光机电系统研究所开发了电容式超声波传感器等产品。这些是作为快速客户定制化调整的平台提供的。这为中小型公司提供了经济高效的高科技访问方式。对客户来说,另一个重要方面是:一种简单且经济高效的方法来测试其应用中的最新开发成果。为此,Fraunhofer IPMS 提供了评估套件。借助这些现成的设置,客户可以例如
车博士曾 4 次获得最佳国际会议论文奖 (EPTC2003 、 EPTC2013 、 Itherm2006 、 ICEPT2006) 。 他合着了一本书,并在先进微电子封装领域的同行期刊和会议论文集上发表了 170 多篇技术论文。他拥有 11 项 已获授权或正在申请的美国专利。 他的研究兴趣包括先进封装的可靠性设计、铜线键合、硅通孔 (TSV) 技术、扇出型晶圆级 / 皮肤级封装、有限元 建模与仿真、微电子封装材料特性、物理驱动和数据驱动的机器学习方法,用于先进封装技术的快速技术风险评 估。 车博士担任 35 多个国际科学期刊的同行评审员,例如 J. of Materials Science 、 J. of Electronic Materials 、 J.Materials and Design 、 Materials characterization 、 Microelectronics Reliability 、 IEEE Trans.on CPMT 、 IEEE Trans.on DMR 、 International J. of Fatigue 、 J. of Alloys and Compounds 、 J. of Micromechanics and Microengineering 等。 车博士连续四年( 2020 年至 2023 年)被斯坦福大学评为全球前 2% 科学家。 他是 IEEE 高级会员。
引言硅光子学和三维 (3-D) 集成是实现更高性能计算设备的新兴技术。与传统电互连相比,使用光子元件的几个主要优势是更低的功耗、更低的延迟和更高的带宽。此外,硅光子学与当前的互补金属氧化物半导体 (CMOS) 技术完全兼容,这使得可以直接过渡到集成电路 (IC) 制造 [1-4]。3-D IC 技术通过晶圆(或芯片)堆叠实现了硅光子学与传统 CMOS 技术的异构集成 [5-9]。异构晶圆堆叠是通过直接氧化物晶圆键合和称为氧化通孔 (TOV) 的 3-D 互连来实现的。直接氧化物晶圆键合为下游处理提供了强大的物理系统,并实现了高吞吐量的可制造性。此外,与传统的硅通孔 (TSV) 相比,后通孔方案中集成的 TOV 对 Si 光子学至关重要,因为它们的通孔电容较低,在此工艺中测得每个通孔的电容为 1.45 fF,从而
乌加。 Ducipiditat lanimpo restibus volupti ncidenti ullabores quid quis et atus si aborion rehendae ratibeaquis que nihilic tation。 Optatat remporpos nothing iumquo temoluptatur as aliquat as experiae estiis and ipicid molum vellorumquam or eium erissequis estis sunt re pror antorehenis adis quas dolorpo rporio omnis andamus accae essum exped and que liquodi taerchitaquo eatus que postem。和 dollam ipsantium inctemquis 核心 autes doloreh endandi pienistium estrum,sin reperro te volor sam es maximinciis endae pos ditatempore nem non pora si debit odiandit ommossi rerepudae perovit vollaccus simet accupta tibust,tem volorpos alitatium invenis isquam que nam,sero toriatquia quunture pariam exeraes tisitibus molore perrrorore verumquam quae doluptatium haruntendam,sus autem issint aut erro blaut quo et ipsam sinum hariberatem doloris ilignis deliquae con essit eos doluptas ea sequatios maioreperat。你找到有福之人了吗?他们渴望被爱和变得聪明吗?