发光安全标签是保护消费品免遭假冒的有效平台。尽管如此,由于标签元件的窄带光致发光特性,这种安全技术的寿命有限。在本文中,我们提出了一个新概念,用于应用通过直接飞秒激光写入制造的混合金属半导体结构中实现的非线性白光发光来创建物理上不可克隆的安全标签。我们证明了在制造阶段控制的制造混合结构的内部组成与其非线性光信号之间的密切联系。我们表明,应用基于离散余弦变换的去相关程序以及标签编码的极性码可以克服白光光致发光光谱相关性的问题。应用的制造方法和编码策略用于创建物理上不可克隆的标签,具有高度的设备唯一性(高达 99%)和位均匀性(接近 0.5)。证明的结果消除了利用白光发光纳米物体创建物理不可克隆标签的障碍。
碳化硅因其色心缺陷的长自旋相干性和单光子发射特性而成为领先的量子信息材料平台之一。碳化硅在量子网络、计算和传感中的应用依赖于将色心发射有效收集到单一光学模式中。该平台的最新硬件开发专注于角度蚀刻工艺,以保留发射器特性并产生三角形设备。然而,人们对这种几何结构中的光传播知之甚少。我们探索了三角形横截面结构中光子带隙的形成,这可以作为开发碳化硅中高效量子纳米光子硬件的指导原则。此外,我们提出了三个领域的应用:TE 通滤波器、TM 通滤波器和高反射光子晶体镜,可用于高效收集和传播光发射模式选择。
由于其色心缺陷具有长自旋相干性和单光子发射特性,碳化硅成为领先的量子信息材料平台之一。碳化硅在量子网络、计算和传感中的应用依赖于将色心发射高效收集到单一光学模式中。该平台的最新硬件开发专注于角度蚀刻工艺,以保留发射极特性并产生三角形器件。然而,人们对这种几何结构中的光传播知之甚少。我们探索了三角形横截面结构中光子带隙的形成,这可以作为在碳化硅中开发高效量子纳米光子硬件的指导原则。此外,我们提出了三个领域的应用:TE 通滤波器、TM 通滤波器和高反射光子晶体镜,它们可用于高效收集和传播光发射模式选择。
请注意,由于它们的高负电荷,我们排除了两个裸露的DNA(U DD <0)之间吸引人的可能性。上面的这三个条件可以在物理上理解如下。由于DNA无法单独与二氧化硅结合,因此结合剂和DNA之间的吸引力(条件2)将确保DNA粘在结合剂上,而复合物(DNA+结合剂)与二氧化硅结合。结合剂必须与二氧化硅结合才能发生(条件1)。但是,如果两种结合剂之间存在吸引力,则在两个结合剂之间形成复合物,而不是DNA结合剂复合物(条件3),它在能量上更有利。这将降低DNA的结合概率与二氧化硅。在这里值得一提的是,在这项工作中为参数扫描所选择的范围由我们较早的作品12,43指导,其中进行了广泛的无偏见和偏见的分子动力学模拟(伞采样模拟),以评估参数。在此,由于系统的复杂性,我们无法评估参数的确切值,因此尝试了参数扫描。在上述所有计算中,我们将结合剂与DNA(rθ)的浓度比为5。
1996 年 1 月 1 日之后发布的报告通常可通过美国能源部 (DOE) SciTech Connect 免费获取。网站 www.osti.gov 公众可以从以下来源购买 1996 年 1 月 1 日之前制作的报告: 国家技术信息服务 5285 Port Royal Road Springfield, VA 22161 电话 703-605-6000(1-800-553-6847) TDD 703-487-4639 传真 703-605-6900 电子邮件 info@ntis.gov 网站 http://classic.ntis.gov/ DOE 员工、DOE 承包商、能源技术数据交换代表和国际核信息系统代表可以从以下来源获取报告: 科学技术信息办公室 PO Box 62 Oak Ridge, TN 37831 电话 865-576-8401 传真 865-576-5728 电子邮件 reports@osti.gov 网站 http://www.osti.gov/contact.html
硅仍然是技术上最重要的材料之一,广泛应用于各种微电子和微机电系统 (MEMS) 设备和传感器。几十年的深入工业研究已经带来了一些最先进的硅材料加工路线,但有关其机械性能的一些细节仍然是个谜。这并不是因为缺乏努力,而是因为其复杂性。就变形机制而言,位错塑性、断裂和各种相变都是可能的,具体取决于加载速率、应力状态、尺寸、温度、杂质的存在等。本研究重点关注硅中的相变,这种相变发生在以压缩载荷为主的围压下 [1-3]。这使得仪器压痕成为诱导此类行为的流行选择 [4,5],我们在各种温度下都进行了这种测试。本研究的独特之处在于联合使用了两种事后显微镜技术:压痕的拉曼映射和聚焦离子束 (FIB) 加工提升的透射电子显微镜 (TEM)。这样做是为了试图更详细地了解不仅发生了哪些相变,而且了解它们在空间中的分布情况以及这种相变与压头下方局部应力状态的关系。在高温下,使用配备 800C 的 Hysitron PI88 原位 SEM 压痕和配备金刚石 Berkovich 尖端的原型高真空平台纳米压痕系统测试了具有 <001> 取向和 p 型掺杂的硅晶片,电阻率为 0.001-0.005 Ω-cm,相当于 1x1019 - 1x1020 cm-3 硼掺杂。沿着压痕的对角线准备提取件,从而将一个面和一个角一分为二。在减薄和转移到半网格之前,先沉积保护性铂。样品制备采用 FEI Versa 3D 双束和 EasyLift 操纵器(Thermo Fischer Scientific,希尔斯伯勒),并使用在明场中以 300keV 运行的 Technai F30 TEM 进行成像。图 1 显示了硅从室温到 450°C 的纳米压痕行为变化的摘要。其中,硬度最初随着温度升高到大约 150°C,然后开始稳步下降。这是一个相当有趣的观察结果,因为当性能由位错塑性介导时,硬度和屈服强度通常会随着温度的升高而降低 - 这表明在低温范围内其他行为占主导地位。这也体现在压痕的后期 SEM 成像中,因为在室温下会出现剥落,在 100°C 时会消失,然后在 200°C 时变成延性流动。剥落归因于卸载过程中晶格膨胀的相变。图 2 展示了一些关于解释这种硬度变化的变形机制变化的理解,其中显示了事后拉曼图和 TEM 图像。此处,室温拉曼图显示压头压痕下有一个强烈的相变区域,这从 TEM 成像中也可以看出来。当温度升高到 100°C 时,拉曼光谱显示从非晶态、R8 和 BC8 硅相的复杂混合物急剧转变为六方相和金刚石立方体相。事后 TEM 也显示相变区域的变化,特别是总相变材料的减少。在 200°C 时,拉曼光谱显示为金刚石立方体,含有少量六方材料。TEM 显示压痕下似乎以孪生塑性为主,几乎没有明显的相变材料。