间充质干细胞(MSC)起源于胚胎的中胚层,并具有分化成各种组织的能力,例如体外和体内。这些干细胞具有在恢复和再生医学中应用的重要潜力,尤其是在修复心脏,肝脏和皮肤损伤方面。在骨科中,MSC可以促进断裂愈合,但仍未完全理解该机制。最近的研究表明,MSC对
https://doi.org/10.26434/chemrxiv-2024-b3m60 orcid:https://orcid.org/0009-0005-4780-8060 Chemrxiv不同行评论的内容。许可证:CC BY-NC 4.0
1 魏思奇 , 余双舰 , 吴思武 , 唐征海 , 郭宝春 , 张立群 .基于功能性橡胶颗粒集成的宽温域橡胶阻尼材料 .高分子学报 , 2024 , 55(3), 338 - 348.2 Sun, T. L.; Gong, X. L.; Jiang, W. Q.; Li, J. F.; Xu, Z.B.; Li, W. H. Study on the damping properties of magnetorheological elastomers based on cis -polybutadiene rubber.Polym.Test , 2008 , 27(4), 520 - 526.3 Prasertsri, S.; Rattanasom, N. Mechanical and damping properties of silica/natural rubber composites prepared from latex system.Polym.Test , 2011 , 30(5), 515 - 526.4 Liu, C.; Fan, J.; Chen, Y.Design of regulable chlorobutyl rubber damping materials with high-damping value for a wide temperature range.Polym.Test , 2019 , 79, 106003.5 Soleimanian, S.; Petrone, G.; Franco, F.; De Rosa, S.; Kołakowski, P. Semi-active vibro-acoustic control of vehicle transmission systems using a metal rubber-based isolator.Appl.Acoust., 2024 , 217, 109861.6 唐征海 , 郭宝春 , 张立群 , 贾德民 .石墨烯 / 橡胶纳米复合材料 .高分子学报 , 2014 , (7), 865 - 877.7 Xia, S.; Chen, Y.; Tian, J.; Shi, J.; Geng, C.; Zou, H.; Liang, M.; Li, Z.Superior low-temperature reversible adhesion based on bio-inspired microfibrillar adhesives fabricated by phenyl containing polydimethylsiloxane elastomers.Adv.Funct.Mater., 2021 , 31(26), 2101143.8 Zhu, Q.; Wang, Z.; Zeng, H.; Yang, T.; Wang, X.Effects of graphene on various properties and applications of silicone rubber and silicone resin.Compos.Part A: Appl.Sci.制造。,2021,142,106240。9刘z。 Shi,J。; Zhao,n。; Li,Z。通过环状三磷酸磷酸基碱催化的环环(CO)聚合物化,高分子量的高分子量聚二乙基硅氧烷和随机聚二甲基氧烷-Co-二甲基硅氧烷)共硅氧烷。欧洲。polym。J.,2022,173,111280。10什叶,J。; Liu,Z。; Zhao,n。; Liu,s。; Li,Z。由三挥手有组织酶催化为明确定义的聚(二甲基硅氧烷)S催化的己二甲基甲硅氧烷的己二甲硅氧烷的控制环的聚合。大分子,2022,55(7),2844-2853。11 Rius-Bartra,J.M。; Ferrer-Serrano,n。; Agulló,n。; Borrós,S。高抗性有机硅橡胶减少了杨的模量。 介电硅橡胶的工业选择。 J. Appl。 polym。 SCI。 ,2023,140(37),E54405。 12 Fradkin,D。G。; Foster,J.N。; Sperling,L。H。;托马斯,D。A。 定量确定基于丙烯酸的互穿聚合物网络的阻尼行为。 橡胶化学。 技术。 ,1986,59(2),255-262。 13 Zlatanic,A。; Radojcic,d。; Wan,X。M。; Messman,J.M。; Dvornic,P。R.抑制聚二甲基硅氧烷的结晶和含苯基共聚物中的链分支。 Macromolecules,2017,50(9),3532-3543。 14 Shen,d。; Yuan,L。; Liang,G。; Gu,A。; Guan,Q.热耐药的光链接阻尼聚聚(氧化苯基) - 氟硅橡胶膜具有宽且高效的阻尼温度。 J. Appl。 polym。 SCI。11 Rius-Bartra,J.M。; Ferrer-Serrano,n。; Agulló,n。; Borrós,S。高抗性有机硅橡胶减少了杨的模量。介电硅橡胶的工业选择。J. Appl。polym。SCI。 ,2023,140(37),E54405。 12 Fradkin,D。G。; Foster,J.N。; Sperling,L。H。;托马斯,D。A。 定量确定基于丙烯酸的互穿聚合物网络的阻尼行为。 橡胶化学。 技术。 ,1986,59(2),255-262。 13 Zlatanic,A。; Radojcic,d。; Wan,X。M。; Messman,J.M。; Dvornic,P。R.抑制聚二甲基硅氧烷的结晶和含苯基共聚物中的链分支。 Macromolecules,2017,50(9),3532-3543。 14 Shen,d。; Yuan,L。; Liang,G。; Gu,A。; Guan,Q.热耐药的光链接阻尼聚聚(氧化苯基) - 氟硅橡胶膜具有宽且高效的阻尼温度。 J. Appl。 polym。 SCI。SCI。,2023,140(37),E54405。12 Fradkin,D。G。; Foster,J.N。; Sperling,L。H。;托马斯,D。A。 定量确定基于丙烯酸的互穿聚合物网络的阻尼行为。 橡胶化学。 技术。 ,1986,59(2),255-262。 13 Zlatanic,A。; Radojcic,d。; Wan,X。M。; Messman,J.M。; Dvornic,P。R.抑制聚二甲基硅氧烷的结晶和含苯基共聚物中的链分支。 Macromolecules,2017,50(9),3532-3543。 14 Shen,d。; Yuan,L。; Liang,G。; Gu,A。; Guan,Q.热耐药的光链接阻尼聚聚(氧化苯基) - 氟硅橡胶膜具有宽且高效的阻尼温度。 J. Appl。 polym。 SCI。12 Fradkin,D。G。; Foster,J.N。; Sperling,L。H。;托马斯,D。A。定量确定基于丙烯酸的互穿聚合物网络的阻尼行为。橡胶化学。 技术。 ,1986,59(2),255-262。 13 Zlatanic,A。; Radojcic,d。; Wan,X。M。; Messman,J.M。; Dvornic,P。R.抑制聚二甲基硅氧烷的结晶和含苯基共聚物中的链分支。 Macromolecules,2017,50(9),3532-3543。 14 Shen,d。; Yuan,L。; Liang,G。; Gu,A。; Guan,Q.热耐药的光链接阻尼聚聚(氧化苯基) - 氟硅橡胶膜具有宽且高效的阻尼温度。 J. Appl。 polym。 SCI。橡胶化学。技术。,1986,59(2),255-262。13 Zlatanic,A。; Radojcic,d。; Wan,X。M。; Messman,J.M。; Dvornic,P。R.抑制聚二甲基硅氧烷的结晶和含苯基共聚物中的链分支。Macromolecules,2017,50(9),3532-3543。14 Shen,d。; Yuan,L。; Liang,G。; Gu,A。; Guan,Q.热耐药的光链接阻尼聚聚(氧化苯基) - 氟硅橡胶膜具有宽且高效的阻尼温度。 J. Appl。 polym。 SCI。14 Shen,d。; Yuan,L。; Liang,G。; Gu,A。; Guan,Q.热耐药的光链接阻尼聚聚(氧化苯基) - 氟硅橡胶膜具有宽且高效的阻尼温度。J. Appl。polym。SCI。SCI。,2019,136(12),47231。15 Wang,Y。; Cao,R。; Wang,M。;刘x。 Zhao,X。; lu,y。;冯,a。; Zhang,L。通过阴离子共聚和随后的环氧化的苯基硅橡胶设计和合成苯基硅橡胶。 聚合物,2020,186,122077。 16 Zhu,L。; Zhao,s。;张,c。 Cheng,X。; Hao,J。; Shao,X。; Zhou,C。链结构对苯基硅橡胶阻尼特性和局部动力学的影响:实验和分子模拟的见解。 polym。 测试。 ,2021,93,106885。 17 Cui,H。; Jing,q。; Li,d。; Zhuang,t。;高,y。 ran,X。 研究由硼端多硅氧烷修饰的有机硅橡胶的高温阻尼特性的研究。 J. Appl。 polym。 SCI。 ,2023,140(1),E53262。 18 ma,X。; Luo,c。; Zeng,H。;彭,Y。; Zhao,L。; Zhang,F。聚二氨基硅氧烷对具有双网络结构的有机硅橡胶泡沫的机械性能的影响。 polym。 eng。 SCI。 ,2024,10.1002/pen.26663。 19张,c。; Pal,K。; BYEON,J.U。; Han,S.M。; Kim,J。K.关于硅橡胶/ EPDM阻尼材料的机械和热性能的研究。 J. Appl。 polym。 SCI。 ,2011,119(5),2737-2741。15 Wang,Y。; Cao,R。; Wang,M。;刘x。 Zhao,X。; lu,y。;冯,a。; Zhang,L。通过阴离子共聚和随后的环氧化的苯基硅橡胶设计和合成苯基硅橡胶。聚合物,2020,186,122077。16 Zhu,L。; Zhao,s。;张,c。 Cheng,X。; Hao,J。; Shao,X。; Zhou,C。链结构对苯基硅橡胶阻尼特性和局部动力学的影响:实验和分子模拟的见解。 polym。 测试。 ,2021,93,106885。 17 Cui,H。; Jing,q。; Li,d。; Zhuang,t。;高,y。 ran,X。 研究由硼端多硅氧烷修饰的有机硅橡胶的高温阻尼特性的研究。 J. Appl。 polym。 SCI。 ,2023,140(1),E53262。 18 ma,X。; Luo,c。; Zeng,H。;彭,Y。; Zhao,L。; Zhang,F。聚二氨基硅氧烷对具有双网络结构的有机硅橡胶泡沫的机械性能的影响。 polym。 eng。 SCI。 ,2024,10.1002/pen.26663。 19张,c。; Pal,K。; BYEON,J.U。; Han,S.M。; Kim,J。K.关于硅橡胶/ EPDM阻尼材料的机械和热性能的研究。 J. Appl。 polym。 SCI。 ,2011,119(5),2737-2741。16 Zhu,L。; Zhao,s。;张,c。 Cheng,X。; Hao,J。; Shao,X。; Zhou,C。链结构对苯基硅橡胶阻尼特性和局部动力学的影响:实验和分子模拟的见解。polym。测试。,2021,93,106885。17 Cui,H。; Jing,q。; Li,d。; Zhuang,t。;高,y。 ran,X。 研究由硼端多硅氧烷修饰的有机硅橡胶的高温阻尼特性的研究。 J. Appl。 polym。 SCI。 ,2023,140(1),E53262。 18 ma,X。; Luo,c。; Zeng,H。;彭,Y。; Zhao,L。; Zhang,F。聚二氨基硅氧烷对具有双网络结构的有机硅橡胶泡沫的机械性能的影响。 polym。 eng。 SCI。 ,2024,10.1002/pen.26663。 19张,c。; Pal,K。; BYEON,J.U。; Han,S.M。; Kim,J。K.关于硅橡胶/ EPDM阻尼材料的机械和热性能的研究。 J. Appl。 polym。 SCI。 ,2011,119(5),2737-2741。17 Cui,H。; Jing,q。; Li,d。; Zhuang,t。;高,y。 ran,X。研究由硼端多硅氧烷修饰的有机硅橡胶的高温阻尼特性的研究。J. Appl。polym。SCI。 ,2023,140(1),E53262。 18 ma,X。; Luo,c。; Zeng,H。;彭,Y。; Zhao,L。; Zhang,F。聚二氨基硅氧烷对具有双网络结构的有机硅橡胶泡沫的机械性能的影响。 polym。 eng。 SCI。 ,2024,10.1002/pen.26663。 19张,c。; Pal,K。; BYEON,J.U。; Han,S.M。; Kim,J。K.关于硅橡胶/ EPDM阻尼材料的机械和热性能的研究。 J. Appl。 polym。 SCI。 ,2011,119(5),2737-2741。SCI。,2023,140(1),E53262。18 ma,X。; Luo,c。; Zeng,H。;彭,Y。; Zhao,L。; Zhang,F。聚二氨基硅氧烷对具有双网络结构的有机硅橡胶泡沫的机械性能的影响。polym。eng。SCI。 ,2024,10.1002/pen.26663。 19张,c。; Pal,K。; BYEON,J.U。; Han,S.M。; Kim,J。K.关于硅橡胶/ EPDM阻尼材料的机械和热性能的研究。 J. Appl。 polym。 SCI。 ,2011,119(5),2737-2741。SCI。,2024,10.1002/pen.26663。19张,c。; Pal,K。; BYEON,J.U。; Han,S.M。; Kim,J。K.关于硅橡胶/ EPDM阻尼材料的机械和热性能的研究。J. Appl。polym。SCI。 ,2011,119(5),2737-2741。SCI。,2011,119(5),2737-2741。
摘要:硅像素传感器上的防护环结构有益于提高传感器的高压承受性能。为了评估防护圈结构对硅像素传感器的保护效果,模拟和分析了三种防护环结构。通过技术计算机辅助设计进行了三个防护环结构的两个维度建模,并使用软件内置的电气模型模拟了三个防护圈结构的I -V特性。当前收集环的存在可以使像素可以承受高压,并且不等的防护戒指,不同的空间后卫环,内部和外部等距的Al悬架,并且多个防护戒指结构有益于进一步增加传感器的击穿电压。关键词:PIN二极管silicon Pixel Sensor;防护戒指;耐用高压;技术计算机辅助DEGSIN OCIS代码:280.4750 ;230。0040 ;230.5160
Perch M,Hayes D JR,Cherikh W S等。国际心脏和肺部移植学会国际胸腔器官移植注册中心:第三十九成人肺移植报告-2022;专注于患有慢性阻塞性肺部疾病的肺移植受者[J]。j心脏肺移植,2022,41(10):1335-1347。doi:10.1016/j。Healun.2022.08.007。
间充质干细胞(MSC)具有自我更新能力,表现出多种分化的能力,并展示了关键特征,例如分泌作用,病变位点迁移和免疫调节潜力,使它们具有强大的神经退行性疾病疗法的候选者。许多研究表明,可以有效刺激MSC以区别于神经元。在直接将原始,未分化的MSC移植到神经退行性疾病的动物模型中的研究中已经观察到了积极的结果,但证据表明,通过组织工程技术诱导神经元差异的预处理可以显着增强其治疗作用。各种策略,例如化学物质,生长因子,与神经细胞共培养,基因转染和miRNA,可以诱导MSC的神经分化。其中,源自化学物质的小分子特别有效,因为它们有效,迅速诱导了MSC的神经分化,单独或组合。本综述旨在分析使用小痣来促进MSC分化为神经细胞的进步,从而对基于MSC的临床神经退行性疾病的疗法提供了对其潜在应用的见解。
图2:硅酸二核的转移学习结果。(a)转移(蓝色)和直接学习(橙色)的能量误差,是用于训练的DFT数据量的函数。底部面板显示了由于传输学习而导致的误差的减少。(b)与DFT值相比,使用转移和直接学习和reaxff(灰色)评估的700个结构的测试集的能量。(c) - (d)与上图相同,在力误差的情况下。(e)使用DFT(黑色),MLP-Direct(Orange)和MLP转移(蓝色)计算的γ-亮石的声子分散。(f)相同多晶型物的弹性张量。颜色表示相对于DFT值的偏差。
[25] Shi K W,Yow K Y,LoC。单束和多光束激光槽过程参数开发和40 nm节点的模具特性 - k/ulk Wafer [C]∥2014IEEE 16th 16th Electronics包装技术会议(EPTC),2014年12月3日至5日,2014年12月3日,新加坡。纽约:IEEE出版社,2015:752-759。
第二,具有侵略性的干蚀刻和湿清洁,对于最佳波导图案至关重要,可能会损害纳米线的制造产量和整体检测器性能。根据所选过程流量,可以实施几种缓解策略。在检测器优先的方法中(在波导蚀刻之前制造纳米线),可以应用封装层以减少纳米线降解。22相反,波导优先的方法(在波导蚀刻后产生纳米线)自然会暴露于侵袭性化学物质中。但是,这种方法可能导致纳米线制造过程的波导质量降解,从而增加了光损失。此外,波导的表面粗糙度可以影响检测器的产量。21在这种情况下,缓冲层20在随后的处理过程中为波导提供了保护,同时也有可能降低表面粗糙度。纳米线的产量也可以通过使用无定形超导体来提高,因为它们的底物要求较少。22