硝化和反硝化生物过程用于去除废水处理中的氮,可提高出水水质,从而减少接收介质中的硝化和随后的氧气消耗;进一步将输送到沿海地区的氮降低到防止沿海水体富营养化的水平[1]。硝化是一个自养需氧过程,通过两个连续的反应将铵转化为硝酸盐:NH 4 + NO 2 – NO 3 –。在铵氧化的第一步中,铵被铵氧化细菌转化为亚硝酸盐,在第二步中,亚硝酸盐被亚硝酸盐氧化细菌转化为硝酸盐。众所周知,硝化生物的比例随着废水 C/N 比的增加而减少。反硝化是一种异养缺氧过程,通过反硝化生物体将硝酸盐转化为气态氮,反应顺序如下:NO 3 – NO 2 – NO N 2 O N 2 [2]。在废水处理中,硝化和反硝化通常分两个步骤进行,因为这两个过程的环境条件不同。废水的生物处理需要培养专门的细菌种群,这些细菌种群可通过固定化等工程技术来强化和加速。事实上,生物过滤器相对于活性污泥的主要优势在于其致密性和在废水生物处理中的效率 [3]。通常,生物膜被描述为基质包裹的微生物,它们粘附在表面和/或彼此上,产生一个动态环境,其中组成微生物细胞似乎达到体内平衡,并被最佳地组织起来以利用所有可用的营养物质。尽管有相当多的综合评论涵盖了生物膜特征和生物膜形成 [3],但它们通常不太强调生物物理原理在生物膜中的作用 [4]。在本研究中,我们根据最近的技术和理论进展重新审视膜催化生物物理模型,以及如何利用它们来强调膜介导硝化和反硝化的细节。我们研究了氮浓度在膜催化中可能造成的影响,并将注意力集中在用于确定分配常数的技术上。
<根特大学,技术帕克71,9052,根特,比利时B比利时B植物系统生物学中心,Technologiepark 71,9052,Ghent,Belgium C Ghent C Ghent C Ghent C ghent University for Bioassay Development of Bioassay Development and Specant(C-Bios),9052,VIB,VIB,VIB,VIB,VIB,VIB,VENT,VENT,VENT,VIB,VIB,VIB 9052,根特,比利时E植物生物学与生态学系,巴斯克大学Universe of apdo。 644, Bilbao, E-48080, Spain f Laboratory of Applied Physical Chemistry (ISOFYS), Ghent University, Coupure Links 653, 9000, Ghent, Belgium g Department of Microbiology, RIBES, Radboud University, Heyendaalseweg 135, 6525, AJ, Nijmegen, the Netherlands h VIB Metabolomics Core, Technologiepark 71,9052,根特,比利时I合成,生物库和生物有机化学研究小组(Synbioc),绿色化学技术系,根特大学,政变链接653,9000,比利时根特,<根特大学,技术帕克71,9052,根特,比利时B比利时B植物系统生物学中心,Technologiepark 71,9052,Ghent,Belgium C Ghent C Ghent C Ghent C ghent University for Bioassay Development of Bioassay Development and Specant(C-Bios),9052,VIB,VIB,VIB,VIB,VIB,VIB,VENT,VENT,VENT,VIB,VIB,VIB 9052,根特,比利时E植物生物学与生态学系,巴斯克大学Universe of apdo。 644, Bilbao, E-48080, Spain f Laboratory of Applied Physical Chemistry (ISOFYS), Ghent University, Coupure Links 653, 9000, Ghent, Belgium g Department of Microbiology, RIBES, Radboud University, Heyendaalseweg 135, 6525, AJ, Nijmegen, the Netherlands h VIB Metabolomics Core, Technologiepark 71,9052,根特,比利时I合成,生物库和生物有机化学研究小组(Synbioc),绿色化学技术系,根特大学,政变链接653,9000,比利时根特,<根特大学,技术帕克71,9052,根特,比利时B比利时B植物系统生物学中心,Technologiepark 71,9052,Ghent,Belgium C Ghent C Ghent C Ghent C ghent University for Bioassay Development of Bioassay Development and Specant(C-Bios),9052,VIB,VIB,VIB,VIB,VIB,VIB,VENT,VENT,VENT,VIB,VIB,VIB 9052,根特,比利时E植物生物学与生态学系,巴斯克大学Universe of apdo。 644, Bilbao, E-48080, Spain f Laboratory of Applied Physical Chemistry (ISOFYS), Ghent University, Coupure Links 653, 9000, Ghent, Belgium g Department of Microbiology, RIBES, Radboud University, Heyendaalseweg 135, 6525, AJ, Nijmegen, the Netherlands h VIB Metabolomics Core, Technologiepark 71,9052,根特,比利时I合成,生物库和生物有机化学研究小组(Synbioc),绿色化学技术系,根特大学,政变链接653,9000,比利时根特,<根特大学,技术帕克71,9052,根特,比利时B比利时B植物系统生物学中心,Technologiepark 71,9052,Ghent,Belgium C Ghent C Ghent C Ghent C ghent University for Bioassay Development of Bioassay Development and Specant(C-Bios),9052,VIB,VIB,VIB,VIB,VIB,VIB,VENT,VENT,VENT,VIB,VIB,VIB 9052,根特,比利时E植物生物学与生态学系,巴斯克大学Universe of apdo。644, Bilbao, E-48080, Spain f Laboratory of Applied Physical Chemistry (ISOFYS), Ghent University, Coupure Links 653, 9000, Ghent, Belgium g Department of Microbiology, RIBES, Radboud University, Heyendaalseweg 135, 6525, AJ, Nijmegen, the Netherlands h VIB Metabolomics Core, Technologiepark 71,9052,根特,比利时I合成,生物库和生物有机化学研究小组(Synbioc),绿色化学技术系,根特大学,政变链接653,9000,比利时根特,
1。乌干达西部坎帕拉国际大学生物医学科学学院微生物学系2.生物化学系生物医学科学系,坎帕拉国际大学,西部校园乌干达3.乌干达西部校园坎帕拉国际大学盟军健康科学学院医学实验室科学系4。乌干达西部校园坎帕拉国际大学生物医学科学学院解剖学系5。生理学系,生物医学科学学院,坎帕拉国际大学,西部校园,乌干达6。坎帕拉国际大学出版与扩展系,P。O。Box 20000,乌干达。 7。 坎帕拉国际大学出版与扩展系,P。O。 Box 71 Western校园,乌干达Box 20000,乌干达。7。坎帕拉国际大学出版与扩展系,P。O。Box 71 Western校园,乌干达Box 71 Western校园,乌干达
Phuong Vuong,Suresh Sundaram,Vishnu Ottapilakkal,Gilles Patriarche,Ludovic Largeau等。蓝宝石底物方向对III-硝酸盐的范德华外观对2D六边形硝酸硼的影响:对光电设备的影响。ACS应用的纳米材料,2022,5(1),pp.791-800。10.1021/acsanm.1c03481。hal-04460183
研究人员进行了为期 60 天的土壤实验,研究铜吡唑如何影响土壤铵态氮和硝态氮水平,以及对土壤微生物群落的影响。结果表明,铜吡唑减缓了氮转化中的硝化和反硝化过程。它通过降低脲酶活性和降低土壤中硝化基因(AOB—amoA)和反硝化基因(nirK)的水平来实现这一点。
从散装到单层guillaume cassabois laboratoire查尔斯·库仑(UMR5221)CNRS-montpellier University,F-34095 Montpellier,法国guillaume.cassabois.cassabois@umontpellier.fr Hexagonal Boron Nitride(Hexagonal Boron Nitride(Hbbn)依靠其低介电常数,高导热率和化学惰性。2004年,高质量晶体的生长表明,HBN也是深层硫酸群域中发光设备的有前途的材料,如加速电子激发[1]在215 nm处的激光证明[1],也证明了激光的表现[1],也证明了LASITIOL ELLICTER ELLICTIOL [1],也证明了LASITER IN-type-type-type-type-type-typepe inter-typepe intype intype-ultraviolet [1]。具有类似于石墨烯的蜂窝结构,大量HBN作为具有原子光滑表面的石墨烯的特殊底物获得了极大的关注,更普遍地是范德华异质结构的基本构建块[3]。我将在此处讨论我们的结果,以从批量到单层的HBN的光电特性。i将首先关注散装HBN,这是一个间接的带隙半导体,具有非凡的特性[4]。i将介绍我们最近的测量结果,揭示了散装HBN中巨大的光 - 物质相互作用[5]。然后,我将向单层HBN讲话。在通过高温MBE在石墨上生长的样品中,在与原子上薄的HBN发射的共鸣中发现了最小的反射率,从而证明了单层HBN的直接带隙[6]。最近通过从散装晶体中去除的单层HBN中的深度硫酸盐中的高光谱成像进一步证实了这些结果[7]。参考
六角硼硝酸盐(HBN)在过去十年中一直是众多研究工作的主题。是在HBN中产生光学活性缺陷,因为它们易于整合,例如在范德华(Van der Waals)异质结构及其室温光子发射。在HBN中创建此类缺陷的许多方法仍在研究中。在这项工作中,我们介绍了使用具有不同等离子体物种的远程等离子体在HBN中创建单个缺陷发射器的方法,并从统计上报告了结果。我们使用了氩气,氮和氧等离子体,并报告了由不同气体物种及其光学特性产生的发射器的统计数据。特别是,我们检查了血浆过程前后的去角质片的发射,而无需退火步骤,以避免产生不受血浆暴露引起的发射器。我们的发现表明,纯物理氩等离子体治疗是通过血浆暴露在HBN中创建光学活性缺陷发射器的最有希望的途径。
硝化化合物,在许多工业应用中被广泛用作必需的化学中间体,由于其致癌性,诱变性和致病性特性而构成了明显的环境和健康风险。这些化合物是最持久的污染物之一,为环境修复提供了主要的挑战。传统的去除方法,例如吸附,臭氧化,生物修复和电化学过程,是有效的,特别是对于大规模应用。室温催化减少的最新进展是一种有希望的替代方案,这主要是由于其有效性和所得产物的相对较低的氨基苯酚(AP)的毒性相对较低,这是一种有价值的化学物质。近期对工业废水的全面利用引起了极大的兴趣。因此,探索相关的还原技术,包括在水性生态系统中含有有害物质的废物的回收,不仅是最基本的环境问题,而且对经济绩效至关重要。氮气减少的传统方法o c涉及使用有毒试剂和高能消耗的过程,这会带来显着的环境危害。审查确定了当前理解中的重要差距,例如氢源在还原过程中的确切作用,并强调了该领域进一步探索的必要性。这些进步有可能改善工业过程的经济生存能力和环境可持续性,特别是在废水回收和减少污染的背景下。发展高度有效的可持续催化剂对于选择室温催化减少技术至关重要,这不仅解决了与危险的硝化化合物有关的环境问题,而且对工业废水管理的更广泛挑战有助于。
结果与讨论:ECT 下 N 2 O–N 排放量比环境排放量增加。使用印楝油包衣尿素 (NOCU) 可使 N 2 O–N 排放量减少 10.3%,而与 ECT 下的颗粒尿素处理相比,Limus 包衣尿素可使 N 2 O–N 排放量减少 14%。与 AMB 相比,ECT 处理下小麦土壤的 NH 3 –N 排放量也有所增加。与 ECT 条件下颗粒尿素的 NH 3 –N 排放量相比,通过 Limus 施用 N 可使小麦的 NH 3 –N 排放量减少 35.7–36.8%。温度升高使谷粒重量减少 7.6%。ECT 下,使用颗粒尿素的谷粒氮含量减少 10.9%。与 ECT 相互作用下的尿素相比,NOCU 和 Limus 的施用分别使谷粒氮增加 6% 和 9%。硝化抑制剂和脲酶抑制剂的应用可能会减少未来气候条件下的活性氮损失并提高氮的利用效率。