熔融硝酸盐和/或氯化盐是用于存储与太阳能热能应用相关的热能的常见候选物。这些熔融盐必须包含在存储系统中,通常由冷水罐组成。当直接阳光不可用时,储存的热能从熔融盐通过热交换器和发电机回收。问题在于坦克衬里。例如,特殊的不锈钢罐已用于熔融硝酸盐盐。仍然,在盐工作温度下,不锈钢的腐蚀和热机械故障是主要问题。随着时间的流逝,不锈钢腐蚀和降解,因此需要一种对熔融盐无反应的难治系统,但同时是一种有效的热绝缘子,尤其是当可能发生盐渗透到油罐衬里时。储罐温度降低,可以使用更负担得起的储罐建筑材料,例如碳钢。确定一个地球聚合物(GP)粘合剂系统在装有粉煤灰微球时适合该法案。将详细介绍此GP难治的组成和特性。仍然,标称密度为60磅的耐火材料(0.96 g/cc),> 2000 psi(13.8 MPa)的抗压强度和2.2至2.8 btu- in/hr-ft 2.2至2.8 btu- in/hr-ft²·°f(根据平均温度)的使用范围为1832222222.100020002000200020002000。
摘要通过在营养较差的环境中提供和回收必需营养物质,海绵微生物组基础宿主功能。基因组数据表明,碳水化合物降解,碳固定,氮代谢,硫代谢和补充B-维生素是中央微生物功能。然而,很少探索海绵共生途径的基因组潜力的验证。为了评估宏基因组预测,我们测序了三个常见的珊瑚礁海绵的宏基因组和元文字:ircinia ramosa,ircinia ramosa,ircinia microconulosa和phyllospongia foliascens。多种碳水化合物活性酶通过猪杆菌,细菌和氰基菌群共生菌表达,这表明这些谱系在吸收溶解的有机物中具有核心作用。在所有海绵中都观察到了碳固定和多硫化合物转化的整个途径的表达。厌氧氮代谢(反硝化和硝酸盐还原)的基因表达比有氧代谢(硝酸盐)更常见,其中只有I. ramosa微生物组表达了硝化途径。最后,虽然B-VITAMIN的生物合成途径的表达很常见,但其他转运蛋白基因的表达受到了限制。总的来说,我们强调了元基因组和
目前的立场和联系信息:环境和农业化学教授Nutrien杰出的农业科学学者C-017植物科学植物科学大楼土壤与作物科学系在化学部联合职位的CIV中的联合职位。&环境工程科罗拉多州立大学堡柯林斯堡,CO 80523-1170,美国电话:(970)491-6235电子邮件:thomas.borch@colostate.edu home页面:http:///borborch.agsci.colostate.edu Google School: https://scholar.google.com/citation?生物地球化学,斯坦福大学,2004年1月至2006年1月。研究主题:铁,养分和微量金属的生物地球化学循环。导师:Scott Fendorf博士。Ph.D. ,环境土壤化学,蒙大拿州立大学,2004年5月。 论文:色谱,光谱和显微镜分析揭示了铁氧化铁和电子班车对发酵细菌2,4,6-三硝基醇(TNT)降解途径的影响。 顾问:William P. Inskeep M.Sc.博士 ,哥本哈根大学环境化学,1999年12月。 论文:不饱和土壤中挥发性氯化脂肪族的降解。 顾问:Bo Svensmark博士。 B.Sc. ,哥本哈根大学环境化学,1997年10月。 论文:DOC对湿地中硝酸盐清除的定量和定性影响。 顾问:Bo Svensmark博士。Ph.D. ,环境土壤化学,蒙大拿州立大学,2004年5月。论文:色谱,光谱和显微镜分析揭示了铁氧化铁和电子班车对发酵细菌2,4,6-三硝基醇(TNT)降解途径的影响。顾问:William P. Inskeep M.Sc.博士,哥本哈根大学环境化学,1999年12月。论文:不饱和土壤中挥发性氯化脂肪族的降解。顾问:Bo Svensmark博士。B.Sc. ,哥本哈根大学环境化学,1997年10月。 论文:DOC对湿地中硝酸盐清除的定量和定性影响。 顾问:Bo Svensmark博士。B.Sc.,哥本哈根大学环境化学,1997年10月。论文:DOC对湿地中硝酸盐清除的定量和定性影响。顾问:Bo Svensmark博士。
氮源氮是氨基酸和核酸的合成所需的。取决于生物体,氮,硝酸盐,氨或有机氮化合物作为氮来源。从添加到培养基生长因子(细菌维生素)的水中提供的氢和氧生长因子是有机化合物,例如氨基酸,嘌呤,嘧啶和维生素,细胞必须具有生长,但不能合成自身。矿物1。需要硫硫来合成含硫的氨基酸和某些维生素。2。磷磷是需要合成磷脂,核酸和辅酶的。3。跟踪元素
科学家已经使用细菌探索了自我修复混凝土,该混凝土使用芽孢杆菌物种在水中暴露时生产碳酸钙,密封裂纹并增强耐用性。铝氧硝酸盐(Alon):Alon是一种由铝,氧气和氮制成的透明陶瓷化合物。它非常耐用,并且已经过测试以抵抗装甲的子弹。TIN(SN):Stanene(Sn)是具有蜂窝结构的单原子锡原子的一层,类似于石墨烯。
硝化和反硝化生物过程用于去除废水处理中的氮,可提高出水水质,从而减少接收介质中的硝化和随后的氧气消耗;进一步将输送到沿海地区的氮降低到防止沿海水体富营养化的水平[1]。硝化是一个自养需氧过程,通过两个连续的反应将铵转化为硝酸盐:NH 4 + NO 2 – NO 3 –。在铵氧化的第一步中,铵被铵氧化细菌转化为亚硝酸盐,在第二步中,亚硝酸盐被亚硝酸盐氧化细菌转化为硝酸盐。众所周知,硝化生物的比例随着废水 C/N 比的增加而减少。反硝化是一种异养缺氧过程,通过反硝化生物体将硝酸盐转化为气态氮,反应顺序如下:NO 3 – NO 2 – NO N 2 O N 2 [2]。在废水处理中,硝化和反硝化通常分两个步骤进行,因为这两个过程的环境条件不同。废水的生物处理需要培养专门的细菌种群,这些细菌种群可通过固定化等工程技术来强化和加速。事实上,生物过滤器相对于活性污泥的主要优势在于其致密性和在废水生物处理中的效率 [3]。通常,生物膜被描述为基质包裹的微生物,它们粘附在表面和/或彼此上,产生一个动态环境,其中组成微生物细胞似乎达到体内平衡,并被最佳地组织起来以利用所有可用的营养物质。尽管有相当多的综合评论涵盖了生物膜特征和生物膜形成 [3],但它们通常不太强调生物物理原理在生物膜中的作用 [4]。在本研究中,我们根据最近的技术和理论进展重新审视膜催化生物物理模型,以及如何利用它们来强调膜介导硝化和反硝化的细节。我们研究了氮浓度在膜催化中可能造成的影响,并将注意力集中在用于确定分配常数的技术上。
最近的重新出现和日益增长的Nitazenes是一群属于Benzimidazole Chemical Class的新合成阿片类药物(NSO),引起了公共卫生的关注。作为一类潜在的阿片类镇痛药,由于其高潜力的滥用潜力,其代谢和生理性格知之甚少。在当前的研究中,在人肝微粒体(HLM),人类S9(HS9)级分和重组细胞色素P450酶中孵育三个硝酸盐 - 丁硝济,异托硝和蛋白酶。所有三种硝酸盐在HLM和HS9中均快速代谢,在60分钟内耗竭超过95%。在HLM中,丁硝济,异托硝齐和protoniTazene具有309、221和216的体外固有清除率(Clint)(µL/min/min/mg蛋白)值,而Verapamil的150个阳性对照(正面对照)。在HS9中,丁二硝,异托嗪和质子硝济的Clint值分别为217、139和150,而对照探针底物的睾丸激素仅为35。从这项研究中鉴定出的推定代谢物包括羟基化产物,脱乙基化,脱甲基化,脱乙基化,然后进行脱甲基化和脱乙基化,然后进行羟基化。代谢表型显示CYP2D6,CYP2B6和CYP2C8以及负责硝酸代谢的主要肝酶。在孵育的30分钟内,CYP2D6耗尽了丁硝化(99%),同烷硝基奈(72%)和丁硝化(100%)显着。硝酸盐的快速代谢可能是对中毒或法医分析中人类基质中未改变药物进行准确,及时检测和定量的重要因素。根据代谢物的活性,多种多态性CYP参与其代谢可能在易感性和/或成瘾的易感性中起重要作用。
威胁可能包括“农药,硝酸盐或磷酸盐;具有不稳定,软底物或大量悬浮的细沉积物的栖息地;低氧条件;以及频繁的水位波动的区域”以及对河流系统和污染的水平和水平和地形改变。这个分类单元似乎具有有限的分散能力,高广场和高度易受栖息地丧失和退化的脆弱性(Blackburn等人,2018年)。
摘要:Ikorodu打火机终端是尼日利亚拉各斯的重要泻湖港口。但是,港口周围发生的强烈人为活动可能会污染水。这项研究评估了人类暴露于港口周围水的安全性。测定水的样品进行物理化学参数,即:电导率,生化氧需求(BOD),总悬浮固体(TSS),总溶解固体(TDS),pH值,pH,浊度,硬度,硬度,钙,钙,氯化物,氯化物,氯化物,硫酸盐,硫酸盐,硝酸盐,硝酸盐和磷酸盐。此外,分析了重金属,包括铅,锰,铜,镉,镍和铬,并使用其价值来估计潜在的健康风险。还测定了微生物的存在。水样有不可渗透水平的亚硝酸盐,油和油脂以及BOD。除Ni以外,重金属的浓度及其平均每日摄入和平均每日皮肤暴露在可耐受的极限之内。然而,他们的危险商和致癌风险通过摄入和真皮接触超过了可忍受的极限。在水中检测到细菌,大肠菌群和真菌的安全水平。基于这些结果,水可能会使用户面临健康危害。有必要采取政策,以确保人类接触水的安全。
摘要 使用简化的分层理论、通道模型实验和近陆架边缘系泊的观测诊断来研究内潮在驱动大陆坡示踪物输送中的作用。内潮的影响可以用斯托克斯漂移来解释,斯托克斯漂移分为两个不同的分量:一个由层厚度和速度的协方差驱动的弹丸分量,以及一个由速度跟随界面运动驱动的剪切分量。对于三层海洋,在模型实验和观测中,内潮的向岸传播驱动斯托克斯输送,该输送在表面和底层向岸,在跃层向离岸。这种反转结构是由于弹丸分量在边界附近占主导地位,而剪切分量在跃层占主导地位。在观测诊断中,斯托克斯输送不会被欧拉输送抵消,欧拉输送主要沿着测深轮廓线方向。如果大陆架上有示踪剂汇,则内潮的斯托克斯漂移会提供系统性的大陆架示踪剂输送,这些示踪剂汇在表面层或底层中携带。相反,如果大陆架上有示踪剂源,并且大陆架示踪剂羽流预计会沿着跃层被带到海上,则示踪剂输送会导向海上。内潮导致的示踪剂输送被诊断为热量、盐和硝酸盐。深度积分硝酸盐通量被导向大陆架,为富饶的大陆架海提供营养物质。