奥氏体不锈钢的低温渗碳/氮化 – 合金成分对微观结构和性能的影响 Giulio Maistro 工业与材料科学系 查尔姆斯理工大学 摘要 奥氏体不锈钢是食品、制药、化学、石油和天然气工业等重视耐腐蚀性的应用中最常用的材料之一。然而,低硬度和差的摩擦学性能往往是其应用的障碍。传统表面硬化技术,如高温渗碳(T > 850°C)和氮化(T > 550°C)不适用于这些合金。在这种情况下,富铬碳化物/氮化物在晶界处的快速沉淀会导致合金中的铬消耗并损害耐腐蚀性。自 80 年代中期以来,已经开发出用于奥氏体不锈钢表面硬化的低温热化学处理,包括气体渗碳和等离子氮化。这些过程可以诱导形成无沉淀间隙过饱和亚稳态扩展奥氏体(也称为 S 相),具有优异的硬度和改善的耐磨性,同时保持耐腐蚀性。
摘要:肝移植代表了急性肝衰竭,末期肝病和肝细胞癌的主要治疗方法。尽管目睹了近几十年来短期和中期生存的进步,但归因于手术技术和免疫抑制方案的改进,但长期死亡率仍然无法修改。值得注意的是,心血管疾病是肝移植物中死亡率的主要原因。通过非酒精性脂肪性肝炎相关的肝硬化的突出性提高,这一趋势是肝移植的指示。此外,免疫压剂的给药与肝脏移植受者中代谢特征的降解相关,从而有助于心血管危险因素的启动或加剧,例如高血压,糖尿病和血脂症。此外,肝后移植期的特征是生活方式质量下降,并且未能承认患者在整个移植过程中受到患者的心理困扰。这些因素会导致患者的代谢特征的恶化,这会因次优的治疗依从性而加剧。这项叙述性评论旨在全面解决与肝脏移植错综复杂的主要代谢疾病。
固体力学中的许多问题都涉及一般和非平凡的本构模型,这些模型难以以各种形式表达。因此,在自动化的有限元求解器(例如Fenics Project)中表达这些问题可能是具有挑战性的,这些元素求解器使用专门为编写变异形式而设计的特定于域的语言。在本文中,我们描述了Fenicsx / Dolfinx的方法和软件框架,该方法几乎可以在任何一般的编程语言中表达构成模型。我们展示了我们对两个固体机制问题的方法。第一个是使用NumBa实现的各向同性硬化的简单von Mises弹性塑料模型,第二个更复杂的Mohr-Coulomb弹性模型,并用JAX实现了Apex平滑。在后一种情况下,我们表明,通过利用JAX的算法自动分化转换,我们可以避免对解决本构模型所需的术语进行错误的手动差异。我们显示了广泛的数值结果,包括泰勒剩余测试,这些结果验证了我们实施的正确性。在LGPLV3或更高版本的许可下,可以作为补充材料提供软件框架和完整的示例。
随着晶体管特征大小的降低,对能量颗粒的敏感性会增加[1-3]。由于电子系统在恶劣的环境中的广泛使用,对辐射效应的缓解技术已在文献中得到了大量研究[4-7]。可以从制造过程修改到不同设计实现的辐射硬化策略。修改掺杂曲线,对沉积过程的优化和使用不同材料的使用是按过程(RHBP)技术众所周知的辐射硬化的示例。但是,除了其较高的成本外,RHBP通常是最先进的CMOS流程后面几代人,导致低级性能。另一方面,通过设计(RHBD)进行辐射硬化可有效提供对辐射效应的硬度[7]。这些技术可以从电路布局到系统设计的不同级别的抽象级别实现。单事件效应(SEE)的产生机制与综合电路(ICS)的物理布局密切相关,例如,在晶体管的P-N连接中,能量沉积和电荷收集之间的关系。因此,可以在电路布局级别上应用几种硬化方法,例如封闭的布局晶体管(ELT),防护环,虚拟晶体管/门或双互锁存储单元(DICE)[6-9]。
Google云硬件基础结构由Google自定义设计,以完全满足严格的要求,包括安全性。Google的服务器的设计目的是提供Google服务。它的服务器是自定义的,并且不包括可能引入漏洞的不必要组件。相同的理念被吸收在Google的软件方法中,包括低级软件及其操作系统,这是剥离的,硬化的Linux版本。Google设计,并包括专门用于安全性的硬件。Titan(其自定义安全芯片)是专门建造的,可以在其服务器和外围设备建立信任的硬件根。Google还构建了自己的网络硬件和软件,以优化性能和安全性。最后,Google的自定义数据中心设计包括多层物理和逻辑保护。拥有完整的堆栈使Google能够以远比第三方产品和设计来控制其安全姿势的基础。Google可以立即采取措施开发和推出修复程序,以解决漏洞,而无需等待其他供应商发出补丁程序或其他补救措施,从而大大减少了Google及其客户的曝光率。
摘要 - 攻击者在现代车辆的电子控制单元(ECU)中发现了许多漏洞,使他们能够停止汽车,控制刹车并采取其他潜在的破坏性动作。这些攻击是可能的,因为车辆的车辆内网络(IVN)不安全,ECU可以在其中互相发送任何信息。例如,损害信息娱乐性ECU的攻击者可能能够向车轮发送制动消息。在这项工作中,我们介绍了一个基于分布式防火墙的计划,以根据集合“安全策略”来阻止这些未经授权的消息,以定义每个ECU应该能够发送和接收的传输。我们利用新开关的Zonal网络的拓扑来验证消息而无需加密,使用三元内容可寻址内存(TCAM)在电线速度上执行策略。至关重要的是,我们的方法最大程度地减少了Edge Ecus的安全负担,并将控制权放在一组硬化的区域网关中。通过Zonal IVN的Omnet ++模拟,我们证明了我们的方案的开销比基于现代密码学的方法低得多,并且可以实现实时,低延迟(<0.1 ms)流量。
摘要:近年来,非病毒肝细胞癌(HCC)的发生率显着增加,这可能与肥胖症和2型糖尿病的代谢综合征的患病率增加有关,这可能与肥胖症的患病率增加有关。几项流行病学研究已经建立了T2DM与HCC发生率之间的关联,并证明了Diabetes Mellitus作为HCC发展的独立危险因素的作用。非酒精性脂肪肝疾病(NAFLD)及其到非酒精性脂肪性肝炎(NASH)和肝硬化的发展是多种多样的,并且涉及促弹药,氧化应激,凋亡,脂肪症,JNK-1激活,IGFISTRATION,IGIG-1增加,氧化应激,氧化应激率增加微生物群。此外,这些机制被认为在与NAFLD相关的肝细胞癌的发展中起着重要作用。早期诊断和及时纠正危险因素对于防止肝脏纤维化和HCC的发作至关重要。本综述的目的是总结有关肥胖,NASH/NAFLD,T2DM和HCC之间关联的当前证据,重点是临床影响。此外,我们将研究这种复杂关系的主要机制,以及最近为这些疾病治疗而出现的有希望的策略。
一词动脉粥样硬化由两个部分组成:动脉粥样硬化(脂肪的积累,伴有几种巨噬细胞)和硬化症(包括平滑肌细胞的纤维化层。高脂血症的存在是冠状动脉疾病的主要风险问题因素。在2016年,动脉粥样硬化研究的进展集中在发现和验证新靶向遗传学以及与动脉粥样硬化心脏病的机理联系上。使用Google表格链接进行了对大学生肝硬化的危险因素和并发症的认识的调查。我们已经在100名大学生中分发了调查。饼图和条形图用于表示输出变量。结果表明,心血管的知识为54.00%,而46.00%的人说是。中风由于缺乏血液供应而导致44.00%的人说心脏,有50.00%的人说Brain,而6.00%的人说我不知道。这些发现得出的结论是,大多数人口不知道肥胖,LDL和家族史等危险因素,这些风险因素导致动脉粥样硬化的发展,但只有少数人群意识到压力,吸烟,冠心心脏病发作,胆固醇,胆固醇,睡眠呼吸暂停,工作压力,工作压力,身体疾病,身体疾病,心脏病,冠心病,领导。
摘要:VDM合金780是一种新型的基于Ni的超合金,与Inconel 718相比,机械性能较大的机械性能较大,其工作温度较高约50℃。年龄可硬化的尼古拉合金结合了提高的温度强度与氧化耐药性,以及由于γ' - 沉淀而提高的微观结构稳定性。这些优点使其适用于可用于高温应用中的耐磨性和耐腐蚀涂料。但是,VDM合金780尚未足够研究激光金属沉积应用。进行了316升标本上单个轨道的实验设计,以评估过程参数对clad质量的影响。随后,通过破坏性和非破坏性测试方法评估了外壳的质量,以验证VDM Alloy 780对于激光金属沉积应用的适用性。单轨实验为涂料或添加剂制造应用提供了基础。用于传达结果,提出了带有回归线的散点图,这说明了特定能量密度对所得孔隙率,稀释,粉末效率,纵横比,宽度,宽度和高度的影响。最后,在孔隙率方面,包裹的质量通过每个单位长度质量不同的两个过程图可视化。
聚甲基丙烯酸酯(PMMA)抗性是在学术界和行业中用于高分辨率特征和升降应用的行业标准电子束抵抗。它也可以用于纳米印刷应用以及其他晶圆厂和研发过程,例如石墨烯薄片转移。CSAR是一种高科技抗电子光刻的抗性,它允许在微电子中实施高端应用,例如航空航天行业或高性能计算机。即使是小于10 nm的小结构,也可以通过这种抗性来实现。根据我们的实验室中的应用,使用电子束敏感的抵抗。电子束抗的例子是在氯苯,苯甲酸苯甲酸苯甲酸苯甲酸苯甲酸苯酚或乙二醇溶剂中稀释的聚甲基丙烯酸酯PMMA。两种溶剂之间的差异有可能稀释至抗抗性的粘度。乙基酯通常用于抗抗性的较薄版本。在暴露过程中,在正音调的情况下,聚合物链会分解,从而导致开发后基质上的空区域。相反,具有负抗性的辐照面积是交叉连接/硬化的,因此开发人员不会攻击它 - 它将仅溶解未暴露的抗性。