04 2020,Ankara,土耳其摘要。在这项研究中,B 4 C(5和10wt。%)颗粒增强的AL-15SI-2.5CU-0.5MG(ECKA Alumix231®)铝基质复合材料是通过冷媒体/烧结技术生产的。在三个不同的温度(555°C,580°C,605°C)下进行烧结过程。对所获得的样品进行密度测量,还检查了微结构分析和硬度测试。根据ASTM B962-08,通过Archimedes技术测量样品的密度。光学显微镜和扫描电子显微镜(SEM)用于显微结构研究。大智能测量是用Brinell硬度进行的。样品的绿色密度随着B 4 c wt。%的增加而降低。可以确定,随着烧结温度的升高,所有样品的密度均降低。据观察,随着烧结温度的升高,孔隙率会增加,孔变得更大。通过SEM和EDS分析确定 Al富含的固体溶液,主要Si和Cu和富含MG的相。 虽然在5wt。%颗粒增强复合材料中的硬度增加,但观察到10wt。%增强复合材料的硬度降低。 由铝制231粉末产生的样品在555°C时给出了最高的硬度值。 这些技术之一是粉末冶金(P/M)技术。 P/M技术自1990年代以来吸引了注意力研究人员。 已经尝试了工程材料的机械性能Al富含的固体溶液,主要Si和Cu和富含MG的相。虽然在5wt。%颗粒增强复合材料中的硬度增加,但观察到10wt。%增强复合材料的硬度降低。由铝制231粉末产生的样品在555°C时给出了最高的硬度值。这些技术之一是粉末冶金(P/M)技术。P/M技术自1990年代以来吸引了注意力研究人员。已经尝试了工程材料的机械性能关键字:粉末冶金,金属基质复合材料,密度,微观结构,硬度©2020由ICMATSE发布的引言工程材料具有各种化学成分和机械性能,使用不同的生产技术生产。
91级钢制在增材制造过程中形成马氏体,而马氏体的回火程度显着影响零件的机械性能。当前,缺乏对91级钢质的回火动力学的定量理解,因此,无法确定重复的热周期对不同加工条件的性能的影响。在这里,我们通过根据文献中可用的回火数据和使用严格测试的热量热和流体流动模型计算出的热循环来确定Johnson Mehl Avrami动力学方程中的恒定项来评估回火动力学。使用神经网络清洁原始回火数据以提高准确性。添加上层时,下层会经历加热和冷却的重复周期。因此,由于马氏体的回火,硬度降低了。相比之下,上层形成的马氏体并未降低到相同的程度,硬度保持较高。因此,零件的硬度随距基板的距离而增加。在不同激光功率下的热输入和扫描速度的变化显着影响回火程度。由于此处使用的方法可以提供对马氏体回火和硬度空间变化的定量理解,因此可以使用它来定制微观结构和可热处理印刷金属部分的硬度。
摘要:激光三维打印已成为基于熔体生长制备高性能Al 2 O 3 基共晶陶瓷的重要技术,但氧空位是该过程中不可避免的晶体缺陷,其形成机理和在沉积态陶瓷中的作用尚不清楚。本文采用激光3D打印制备Al 2 O 3 /GdAlO 3 /ZrO 2 三元共晶陶瓷,通过精心设计的退火实验揭示了氧空位的形成机理,并研究了氧空位对凝固态共晶陶瓷结构和力学性能的影响。揭示了氧空位的形成是由于氧原子通过空位迁移机制从氧化物陶瓷中转移到缺氧气氛中,此外,氧空位的存在对增材制造共晶陶瓷的晶体结构和微观结构没有明显影响。然而这些晶体缺陷的形成会在一定程度上改变陶瓷材料的化学键性质,从而影响沉积态共晶陶瓷的力学性能。研究发现,去除氧空位后,陶瓷材料的硬度降低了3.9%,断裂韧性提高了13.3%。该结果可为调控氧化物陶瓷材料的力学性能提供一种潜在的策略。关键词:氧化物共晶陶瓷;激光3D打印;氧空位;微观结构;力学性能
总氯 ≤ 0.05 ppm 铁、锰、硫化氢 ≤ 0.01 ppm 硼注释8 ≤ 1.0 ppm pH 值 4 至 11 油脂 未检测到 颗粒注释9 RO 渗透液 氧化剂 未检测到 颜色注释10 ≤ 5 APHA 注释:1. 实际性能可能因现场条件而异。参考 Winflows 预测软件来验证预期的产品水质以及为设计条件提供的电阻率、钠和二氧化硅性能保证。要获得硼或其他保证,请联系威立雅。2. 入口压力由产品和浓缩液流的下游压力要求、逆流或并流操作的选择以及堆栈压降决定。3. 在标称流量和 25°C 下。参考 Winflows 预测软件来验证设计条件。4. 参考 Winflows 预测软件和 E-Cell Stack 用户手册来验证设计条件下的给水规格。 5. TEA(以 CaCO 3 计的 ppm)- 总可交换阴离子,这表示进水中存在的所有阴离子的浓度,包括 OH -、CO 2 和 SiO 2 的贡献。必须使用 Winflows 来确认进水 TEA 在特定应用的操作条件下是可接受的。表格值是在最小流量和最大温度下得出的。6. 1.0 ppm 以 CaCO 3 计的进水硬度限制仅适用于标准逆流操作。在并流操作中,允许的进水硬度降低至 0.1 ppm 以 CaCO 3 计。
总氯 ≤ 0.05 ppm 铁、锰、硫化氢 ≤ 0.01 ppm 硼注释8 ≤ 1.0 ppm pH 值 4 至 11 油脂 未检测到 颗粒注释9 RO 渗透液 氧化剂 未检测到 颜色注释10 ≤ 5 APHA 注释:1. 实际性能可能因现场条件而异。参考 Winflows 预测软件来验证预期的产品水质以及为设计条件提供的电阻率、钠和二氧化硅性能保证。要获得硼或其他保证,请联系威立雅。2. 入口压力由产品和浓缩液流的下游压力要求、逆流或并流操作的选择以及堆栈压降决定。3. 在标称流量和 25°C 下。参考 Winflows 预测软件来验证设计条件。4. 参考 Winflows 预测软件和 E-Cell Stack 用户手册来验证设计条件下的给水规格。 5. TEA(以 CaCO 3 计的 ppm)- 总可交换阴离子,这表示进水中存在的所有阴离子的浓度,包括 OH -、CO 2 和 SiO 2 的贡献。必须使用 Winflows 来确认进水 TEA 在特定应用的操作条件下是可接受的。表格值是在最小流量和最大温度下得出的。6. 1.0 ppm 以 CaCO 3 计的进水硬度限制仅适用于标准逆流操作。在并流操作中,允许的进水硬度降低至 0.1 ppm 以 CaCO 3 计。
Liu 等 [36] 在 1950 ℃ 和 50 MPa 压力的 SPS 过 程中,发现随着 TiB 2 的添加量由 5 mol% 增至 30 mol% ,复合陶瓷的硬度降低,断裂韧性增加。 除裂纹偏转和 TiB 2 的钉扎效应使 B 4 C 晶粒细化 ( 从 1.91 μm 减至 1.67 μm) 外,两相间位错的产生, 是 B 4 C 陶瓷增强、增韧的次要原因,其在陶瓷断 裂前吸收能量,造成局部强化 [37–38] 。研究发现, 添加 20 mol% TiB 2 时,复合陶瓷的相对密度为 97.91% ,维氏硬度为 (29.82±0.14) GPa ,断裂韧性 为 (3.70±0.08) MPa·m 1/2 。 3.1.2 Ti 单质引入 与直接添加 TiB 2 相比,在烧结过程中原位反 应生成 TiB 2 可以在较低的烧结温度下获得更高 的密度和更好的机械性能。 Gorle 等 [39] 将 Ti-B( 原 子比 1:2) 混合粉体以 5 wt.% 、 10 wt.% 和 20 wt.% 的比例加入到 B 4 C 粉末中,研磨 4 h 后通过 SPS 在 1400 ℃ 下获得致密的 B 4 C 复合陶瓷。由于 WC 污染,获得了由被 (Ti 0.9 W 0.1 )B 2 和 W 2 B 5 的细颗粒 包裹的 B 4 C 颗粒组成的无孔微结构。当 Ti-B 混合 物的量从 5 wt.% 增至 20 wt.% 时,烧结活化能从 234 kJ·mol −1 降至 155 kJ·mol −1 。含 5 wt.% Ti-B 混 合物的 B 4 C 复合材料的最大硬度为 (3225±218) HV 。由于 TiB 2 的原位形成反应是高 度放热并释放大量能量的自蔓延反应,因此,原 料颗粒界面间的实际温度预计高于 SPS 烧结温 度,同时,液相 W 2 B 5 的形成润湿了 B 4 C 表面, 有助于降低 B 4 C 晶粒的界面能,并加速了沿晶界
作者:Gessica Hollweg。顾问:Paulo Cezar Bastianello Campagnol研究教授研究项目,到2050年,世界人口可以达到90亿人口。在这种情况下,全球粮食产量得到加强至关重要。粮食生产需要增加30%才能为不断增长的人口服务。这一增加是由饮食偏爱减少或防止动物起源产物的偏爱,这是由环境,道德和健康原因所激发的。用蔬菜成分组合制成的蔬菜汉堡包试图再现肉类产品的味道和质地,重点关注营养和感官体验以吸引消费者。这项研究旨在开发植物汉堡包,部分替代大豆纹理蛋白(PTS),其比例为5%,10%,15%和20%的Aguicus Bisporus蘑菇。替代对其对汉堡包的化学成分,纹理,颜色,烹饪性能和感觉特性的影响进行了评估。化学分析显示,水分含量从10%的替代水平显着增加,导致了更好的多汁性。蛋白质含量仍然与对照到15%的替代水平相似,而脂肪含量在治疗之间没有显着差异。纹理曲线表明汉堡浓缩剂(尤其是5%和10%)的硬度降低,导致产品较软。颜色分析表明,在每种蘑菇中5%PTs代替的处理中,亮度(L*)和红色(A*)的强度降低。感官分析表明,汉堡包最多可替换15%的汉堡与对照相当,具有“柔软”,“宜人的色彩”和“良好外观”等属性与消费者的偏好呈正相关。的发现表明,蘑菇agricus bisporus可以有效地用作基于植物的汉堡包中PTS的部分替代品,从而改善了不损害质量的感觉特性。此替代品提供了一种有希望的方法,可以在基于植物的产品上多样化成分,从而为消费者提供了理想的特征。关键字:基于植物的替代方案;感官评估;纹理分析;水分含量;烹饪产量;消费者接受;
银导电油墨因其高电导率和热导率等潜在优势而被应用于电子工业。然而,银需要经过固化过程以减少颗粒之间的孔隙率,并具有光滑的导电轨道以确保最大的导电性。因此,探讨了温度对电导率和微观结构的影响。在分析之前,通过丝网印刷在聚合物基板上印刷银导电浆料。接下来,使用四点探针仪进行电分析以测量电导率,然后进行微观结构和机械分析,分别观察银的结构行为和硬度随温度的变化。研究发现,银的电导率随温度升高而增加。此外,随着温度的升高,银的微观结构尺寸变大,相应地导致银的硬度降低。总之,温度在提高银的电导率方面起着重要作用。关键词:银导电油墨,温度,电导率。1.引言导电油墨可以是无机材料和有机材料[1]。无机材料是金属纳米粒子(例如铜、银和金)分散在基质溶液中,通常用于生产无源元件和晶体管电极 [1]。而有机材料或油墨包括有机材料(例如聚合物),可分为导体、半导体和电介质三类。高导电性聚合物油墨通常用于电池、电容器和电阻器,而半导体基聚合物油墨则用作有源层,例如有机发光二极管 (OLED)、传感器等 [1]。在选择合适的导电油墨之前,需要根据其属性考虑一些要求,例如电导率、对印刷基材的适用性、功函数、氧化稳定性、制造技术和成本。导电油墨必须通过加入导电填料(银、铜和金)表现出优异的导电性能。银纳米粒子是最有前途的导电油墨,也是印刷技术行业目前使用的铜油墨的替代品 [2-5]。在印刷技术中,使用银作为油墨具有优势,因为它可以在 473-573K 的低温范围内粘合和固化 [6-10]。Gao 等人的研究 [11] 报告称,银作为导电填料具有最高的电导率和热导率
摘要。基于晶格的密码学是量子后安全加密方案的有前途的基础,其中有错误的学习(LWE)问题是钥匙交换,收益和同构计算的基石。LWE的现有结构化变体,例如Ring-Lwe(RLWE)和Module-Lwe(MLWE),依靠多项式环以提高效率。但是,这些结构固有地遵循传统的多项式乘法规则,并以它们表示结构化矢量化数据的能力来实现。这项工作介绍了多种元素(VLWE),这是建立在代数几何形状基于代数几何形状的新的结构化晶格概率。与RLWE和MLWE不同,后者使用标准乘法使用多项式环,VLWE在代数品种定义的多元多项式环上使用VLWE操作。一个关键的区别是这些多项式不包含混合变量,并且乘法操作是定义的坐标,而不是通过标准的多项式乘法。该结构可以直接编码和同态处理高维数据,同时保持最差的案例至平均案例硬度降低。我们通过将VLWE的安全性降低到解决理想SVP的多个独立实例中,证明了其针对分类和量子攻击的弹性。此外,我们分析了混合代数武器攻击的影响,表明现有的Gröbner基础和降低技术并不能直接损害VLWE的安全性。建立在该基础上,我们基于VLWE构建了矢量同态加密方案,该方案支持结构化计算,同时维持受控的噪声增长。此方案为隐私的机器学习,加密搜索和对结构化数据的计算进行了潜在的优势。我们的结果位置VLWE是基于晶格的密码学中的一种新颖而独立的范式,杠杆几何形状可以使新的加密功能超出传统的多项式戒指。