英国医生 Richard Caton 于 1875 年在猴子身上实现了这一发明(Caton, 1875 ),德国精神病学家 Hans Berger 于 1924 年在人类身上也实现了这一发明(Jung & Berger, 1979 )。皮层电图(ECoG)后来被广泛用作一种诊断工具,通过在电极对之间施加电刺激电流来识别癫痫发作的起始区和对癫痫患者的重要皮质区进行功能映射(Lesser et al., 1984; Reif et al., 2016 )。ECoG 网格由嵌入硅片的圆形导电盘(电极)组成,硅片被放置在颅骨下方的大脑表面。与头皮脑电图等非侵入性神经信号记录方法相比,ECoG 记录对电极正下方的组织具有高度特异性(高空间分辨率)(Crone 等,1998;Freeman 等,2000;Lesser 等,2010;Leuthardt 等,2004;Miller 等,2009),信号幅度比头皮电极记录高出五倍(Blume & Holloway,2011)。ECoG 电极可以放置在硬脑膜的上方(硬膜外)或下方(硬膜下)(图 1a),并且存在多种配置,通常是 NM 电极网格,其中 N、M > 1,或 1 N 电极条带(图 1b)。用于皮质映射和癫痫监测的标准临床网格和条带的电极间距离(IED;或间距)为 10 毫米(Diehl & Lüders,2000 年;Lesser 等人,2010 年;Penfield & Boldrey,1937 年;Salles
近日,相关研究成果以2D Membranes Interlayered with Bimetallic Metal-Organic Frameworks for Lithium Separation from Brines和Dual metals co-intercalated graphene oxide membrane with outstanding permeability and molecule selectivity for the high-salinity brine treatment为题,分别发表在《纳米快报》(Nano Letters)和《化学工程杂志》(Chemical Engineering Journal)上。研究工作得到国家自然科学基金委员会、科学技术部、中国科学院等的 支持。该工作由青海盐湖所和兰州大学合作完成。 (来源:中国科学院青海盐湖研究所)
原发性膜性肾病 ( primary membranous nephro- pathy , PMN ) 是全球成人肾病综合征常见的病因 , 也是中国原发性肾小球疾病中发病率第二 、 增长 最快的疾病 [ 1 ] 。大多数 PMN 患者有典型的临床表 现 , 包括大量蛋白尿 、 低蛋白血症 、 水肿和高脂血 症等。近 30% 的 PMN 患者能够获得自发缓解 , 但 中危和高危患者 , 即大量蛋白尿 、 肾功能不稳定的 患者 , 缓解的可能性较低 [ 2 ] 。 既往研究表明 , 线粒体功能障碍在急性肾损伤 ( acute kidney injury , AKI ) 和慢性肾脏病 ( chronic kidney diseases , CKD ) 的发病机制和肾脏修复中发 挥关键作用 [ 3 - 4 ] 。线粒体功能与线粒体 DNA ( mito- chondrial DNA , mtDNA ) 的完整性密切相关 , 当线 粒体受损时 , mtDNA 会从线粒体基质释放到细胞 质或细胞外 , 进而激活氧化应激反应 , 并作为炎症 介质激活自然免疫炎症反应 [ 5 ] 。目前多项研究表 明 , 尿 mtDNA 是各种肾脏疾病中线粒体损伤的替 代标志物 [ 6 ] 。我们之前的研究表明 , mtDNA 在尿液 和肾脏组织中容易被检测到 , 其拷贝数与糖尿病肾 脏疾病的肾功能下降和肾脏病理结构改变有关 [ 7 ] 。 另一项研究指出 , 尿液中 mtDNA 与肾功能下降速 度有关 , 并能预测非糖尿病肾脏疾病患者血肌酐翻 倍或需要进行透析治疗的风险 [ 8 ] 。然而 , 尿 mtD- NA 在 PMN 患者中的改变及其对预后的预测作用 仍不明确。本研究旨在探讨尿 mtDNA 与 PMN 患
引言下膜血肿(SDHS)也称为创伤性脑损伤(TBI)。SDH可以在任何年龄发生,但最常见于65岁或以上的老年人口(Kwon等,2022)。硬膜下血肿每100,000个人中约21个,并且变得越来越普遍(Kung&Lin,2020)。计算机断层扫描(CT)是一种成像方式,可使用X射线产生横截面图像。X射线管和检测器围绕感兴趣的区域旋转360度,从而在CT扫描过程中产生横截面图像。这些图像可以在多个平面中重新格式化,甚至可以生成在计算机监视器上查看的三维图像。(Long等,2019)。ct是由于短扫描时间和产生的图像而检测SDHS的首选成像方式。(Kwon等,2022)。
一只十个月大的雄性约克夏犬在遭受脑外伤四个月后接受了 CT 检查。头部 CT 扫描显示脑室扩张,右顶骨附近有新月形外周血肿,并有矿化区域。血肿的内脏层在原生扫描中呈高衰减,静脉注射碘化造影剂后显示中度对比增强。颅骨未发现骨折。这些发现与急性慢性钙化性硬膜下血肿相符,这种血肿在人类中已有更详细的描述。这是第一份报告,其中描述了使用计算机断层扫描对狗进行这种疾病的成像结果。关键词:犬、头部创伤、脑外伤、计算机断层扫描
目的机器学习算法在神经影像学领域已显示出突破性成果。本文,作者评估了一种新开发的卷积神经网络 (CNN) 的性能,用于检测和量化非造影头部 CT (NCHCT) 中硬膜下血肿 (SDH) 的厚度、体积和中线移位 (MLS)。方法回顾性地确定了 2018 年 7 月至 2021 年 4 月期间在单个机构进行的用于评估连续患者头部创伤的 NCHCT 研究。根据神经放射学报告确定了 SDH、厚度和 MLS 的真实值。主要结果是 CNN 在外部验证集中检测 SDH 的性能,使用受试者工作特征曲线下面积分析来衡量。次要结果包括厚度、体积和 MLS 的准确性。结果 在符合研究标准的 263 例有效 NCHCT 病例中,135 例患者(51%)为男性,平均(± 标准差)年龄为 61 ± 23 岁,70 例患者经神经放射科医生评估诊断为 SDH。SDH 厚度中位数为 11 毫米(IQR 6 毫米),16 例患者的 MLS 中位数为 5 毫米(IQR 2.25 毫米)。在独立数据集中,CNN 表现良好,敏感度为 91.4%(95% CI 82.3%–96.8%),特异度为 96.4%(95% CI 92.7%–98.5%),准确度为 95.1%(95% CI 91.7%–97.3%);对于 SDH 厚度超过 10 毫米的亚组,敏感度为 100%。最大厚度平均绝对误差为 2.75 毫米(95% CI 2.14–3.37 毫米),而 MLS 平均绝对误差为 0.93 毫米(95% CI 0.55–1.31 毫米)。计算用于确定自动和手动分割测量之间一致性的 Pearson 相关系数为 0.97(95% CI 0.96–0.98)。结论所述 Viz.ai SDH CNN 在独立验证成像数据集中识别和量化 SDH 的关键特征方面表现非常出色。
通过脑皮层电图 (ECoG) 进行皮层刺激可能是在双向脑机接口 (BD-BCI) 中诱导人工感觉的有效方法。然而,电刺激引起的强电伪影可能会显著降低或掩盖神经信息。详细了解刺激伪影通过相关组织的传播可能会改进现有的伪影抑制技术或启发开发新的伪影缓解策略。因此,我们的工作旨在全面描述和模拟硬膜下 ECoG 刺激中伪影的传播。为此,我们收集并分析了四名患有癫痫并植入硬膜下 ECoG 电极的受试者的雄辩皮层映射程序数据。从这些数据中,我们观察到伪影在所有受试者的时间域中都表现出锁相和棘轮特性。在频域中,刺激导致宽带功率增加,以及基频刺激频率及其超谐波的功率爆发。伪影的空间分布遵循电偶极子的电位分布,在所有受试者和刺激通道中,拟合优度中值为 R 2 = 0.80。高达 ± 1,100 µ V 的伪影出现在距离刺激通道 4.43 至 38.34 毫米的任何地方。这些时间、光谱和空间特性可用于改进现有的伪影抑制技术,启发新的伪影缓解策略,并有助于开发新的皮质刺激方案。总之,这些发现加深了我们对皮质电刺激的理解,并为未来的 BD-BCI 系统提供了关键的设计规范。
摘要 :脑内神经递质多巴胺 (DA) 的含量异常与帕金森病、阿尔兹海 默症等神经系统类疾病的发生发展密切相关,精准、实时监测其脑 内含量可作为临床诊疗的重要参考。电化学分析法具备成本低、响 应快、可实现体内实时监测等优势。然而,脑内复杂环境中蛋白吸 附、多物质共存等因素会极大干扰多巴胺的定量分析,这对电极的 灵敏度、选择性和稳定性提出了极高的要求。因此,研发出满足要 求的电极材料是实现多巴胺电化学检测临床应用的关键。掺硼金刚 石 (BDD) 电极生物相容性好、背景电流低、电势窗口宽、抗吸附性 强、化学稳定性高,相较于易团聚、易脱落而失效的金属纳米颗粒 或电阻较大的高分子材料, BDD 电极更具潜力解决上述多巴胺检测 的难点问题。然而, BDD 电极虽能有效抵御蛋白吸附,但在多巴胺 的选择性检测方面存在不足: BDD 电极表面缺乏能够高灵敏度、高 选择性检测多巴胺分子的官能团。因此,在保持 BDD 本征特性的基 础上,系统研究 BDD 电极表面改性与功能化修饰对电化学检测多巴 胺的选择性、灵敏度和稳定性的影响机理,是 BDD 电极实现临床应 用的关键。基于此,本论文从 BDD 膜电极的功能性改性与修饰到 BDD 微电极体内检测,系统研究了 BDD 膜电极在多巴胺电化学检测 中的作用机理,揭示了 BDD 电极界面性质对多巴胺分子氧化过程的 影响规律,所得具体结论如下: (1) 针对 BDD 电化学活性较低的问题,采用高温溶碳刻蚀和滴 涂修饰方法,在 BDD 电极表面刻蚀纳米孔洞并修饰 Nafion 选择性透 过膜( NAF ),制备了 Nafion 修饰的多孔 BDD 复合电极 NAF/pBDD ; 研究了该复合电极对多巴胺的电化学检测机理,揭示了 NAF/pBDD 复合电极比 BDD 电极具有更多活性位点的原因,同时探究了 Nafion 膜对多巴胺和抗坏血酸的作用机制;该电极针对多巴胺的检测限 (42 nM) 和检测线性范围 (0.1 ~ 110 μM) 相较于 BDD 均得到了有效改善。 (2) 针对 BDD 电极对多巴胺选择性较弱的问题,在 pBDD 表面 修饰活性更高的纳米炭黑颗粒 (CB) ,制备了 NAF-CB/pBDD 复合电 极,研究了炭黑颗粒的加入对主要干扰物抗坏血酸 (AA) 电化学响应 的影响机理,揭示了该电极在高浓度、多干扰物并存环境下对多巴 胺的选择性检测机制。结果表明,该电极可有效将干扰物抗坏血酸 的氧化电位提前以减少对多巴胺信号的干扰,检测限 (54 nM) 和检测