在按照目视飞行规则飞行时,飞行员主要依靠视觉扫描来避开其他飞机和空中碰撞威胁。联邦航空管理局的记录表明,与无人机的近距离接触正在增加,2016 年报告的无人机系统 (UAS) 目击或近距离碰撞达到 1,761 起。这项研究旨在评估飞行员目视检测配备频闪灯的 UAS 平台的有效性。10 名飞行员组成的样本驾驶通用航空飞机,对配备频闪灯的小型 UAS (sUAS) 进行五次拦截。参与者被要求指出他们何时目视发现无人机。比较飞机和 sUAS 平台的地理位置信息以评估能见距离。研究结果用于评估日间频闪灯作为一种增强飞行员 sUAS 检测、能见度和防撞能力的方法的有效性。参与者在 7.7% 的拦截中发现了无人机。由于缺乏数据点,作者无法确定频闪灯是否能改善 UAS 视觉检测。作者建议进一步研究使用 sUAS 安装的频闪灯进行夜间视觉检测的有效性。
这些都是驾驶舱设计过程需要确保的,但不限于显示器设计、飞机控制、自动化、驾驶舱的人机交互和飞行员的外部视野,即外部视野。外部视野必须满足监管要求,旨在确保视野足以让飞行员安全操作飞机,并让他们有合理的机会看到并避开构成碰撞威胁的其他飞机。同时,在飞行的关键时期,重要的是机组人员要以最小的头部转动来获取视野前方的信息。因此,应将带有关键飞行信息的驾驶舱显示器放置在这些位置。应兼顾外部和内部视野,以确保飞行员的可见性。此外,一些将 PFD 布置在驾驶舱仪表板中的选项给面板空间、飞行员的安全性和舒适性带来了困难。在新的区域飞机驾驶舱中使用航空电子设备 15.1 英寸或 14.1 英寸显示器评估了两种布局 PFD,即直线和 T 线布局。由于驾驶舱空间有限,直列式 4 台 15.1 英寸显示屏无法容纳仪表板和忽略;但 T 型 15.1 英寸显示屏可作为选项 1。4 台 14.1 英寸显示屏可分别作为选项 2 和选项 3 排列为直列式和 T 型布局,并且两者都可满足监管要求,同时满足飞行员的外部和内部视野。
本文对 2021 年 11 月 15 日进行的俄罗斯反卫星 (ASAT) 拦截试验进行了后续分析,该试验发射了一套 ASAT 武器系统来拦截和摧毁在轨的 COMOS 1408,这是一颗已报废的苏联电子情报 (ELINT) 卫星,于 1982 年发射。最初的分析估计了碎片事件产生的碎片将如何对航天器操作员、他们的 SSA 知识、他们检测和缓解高碰撞威胁事件的能力以及他们在大型星座框架内使用机动燃料产生不利影响。本文将这些最初的相遇率预测、对低地球轨道 (LEO) 航天器(尤其是太阳同步轨道上的航天器)的碰撞风险以及轨道寿命估计与运行飞行安全系统和服务检测到的实际会合和轨道寿命进行了比较。对连续模型和离散破碎模型中实际碎片碎片跟踪与碎片体积演变进行了比较。将我们最初的预测与实际情况进行比较,可以发现,最初的 ASAT 碎片轨道寿命预测与迄今为止在轨观测到的寿命非常接近,预测寿命比迄今为止观测到的寿命长约 25%。飞行安全和所需避让机动预测也得到了观测到的结合趋势的验证,俄罗斯 ASAT 试验在某些高度导致飞行安全性和可持续性降低多达 20%,在某些轨道条件下碰撞风险增加一倍。
航天器运营商在确定是否有必要采取防撞机动时,会采用不同的近距离指标和防撞距离。通常,航天器处于低风险轨道状态的运营商可能会以很少的燃料或运营成本实施极其保守的防撞策略,而航天器在高风险轨道状态运行的运营商则被迫采取经济的防撞策略,以避免耗尽燃料预算并给飞行动力学团队带来过重负担。不幸的是,虽然存在许多防撞机动“通过/不通过”标准,但运营商通常无法获得 SSA 信息和 SSA 精度,而这些精度对于填充最适合他们的标准是必不可少的。此外,用于填充这些标准的算法有时包含无效假设,例如在需要更复杂的公式时使用线性碰撞概率和球形物体形状近似值。虽然存在一些估计卫星物体尺寸的来源,但会合时的相对姿态可能不确定甚至不可用,特别是对于所谓的“次要”或会合物体。空间数据协会 (SDA) 是一个由全球卫星运营商组成的协会,致力于确保可控、可靠和高效的空间环境,该协会已在其成员中开展了一项调查,以收集有关其会合评估运营概念的数据。这些包括防撞通过/不通过指标、防撞目标和运营约束。任何试图向运营商提供有意义的会合评估服务的实体都可以使用这些数据来设计服务要求。本文评估了与这些不同的“通过/不通过”指标相关的空间态势感知 (SSA) 数据的各种定位精度要求,这些指标用于空间交通协调 (STC) 和空间交通管理 (STM) 的会合缓解过程。这些指标包括最接近时 (TCA) 的错失距离、组件化错失距离(例如,TCA 径向分离,即使在轨道内或轨道外分离或不确定性未知的情况下也能防止碰撞),以及最大碰撞概率和估计的真实概率。需要探讨的另一个关系是碰撞概率对 TCA 处卫星方向和配置/形状的依赖关系。由于不了解方向,计算碰撞概率时必须做出某些假设。一种常见的做法是用一个封装球体来近似航天器的硬体。这种一刀切的方法无需确定方向,但会导致物体体积被高估,概率被高估,除非两颗卫星实际上都是球体。为了产生更具代表性的概率,我们使用卫星的尺寸来定义一个包围的矩形框。通过投射比球体更小的区域,这种方法可以更准确地描绘实际的碰撞威胁,但缺点是必须在一定程度上准确了解盒子的方向。但即使选择产生最大可能覆盖范围的方向,盒子形状的概率也会低于球体。为了解决这个问题,我们估计了一系列对应于一系列方向的碰撞概率值,从中我们可以探索给定碰撞概率阈值所需的态度知识和位置精度之间的相互关系。