Loading...
机构名称:
¥ 2.0

航天器运营商在确定是否有必要采取防撞机动时,会采用不同的近距离指标和防撞距离。通常,航天器处于低风险轨道状态的运营商可能会以很少的燃料或运营成本实施极其保守的防撞策略,而航天器在高风险轨道状态运行的运营商则被迫采取经济的防撞策略,以避免耗尽燃料预算并给飞行动力学团队带来过重负担。不幸的是,虽然存在许多防撞机动“通过/不通过”标准,但运营商通常无法获得 SSA 信息和 SSA 精度,而这些精度对于填充最适合他们的标准是必不可少的。此外,用于填充这些标准的算法有时包含无效假设,例如在需要更复杂的公式时使用线性碰撞概率和球形物体形状近似值。虽然存在一些估计卫星物体尺寸的来源,但会合时的相对姿态可能不确定甚至不可用,特别是对于所谓的“次要”或会合物体。空间数据协会 (SDA) 是一个由全球卫星运营商组成的协会,致力于确保可控、可靠和高效的空间环境,该协会已在其成员中开展了一项调查,以收集有关其会合评估运营概念的数据。这些包括防撞通过/不通过指标、防撞目标和运营约束。任何试图向运营商提供有意义的会合评估服务的实体都可以使用这些数据来设计服务要求。本文评估了与这些不同的“通过/不通过”指标相关的空间态势感知 (SSA) 数据的各种定位精度要求,这些指标用于空间交通协调 (STC) 和空间交通管理 (STM) 的会合缓解过程。这些指标包括最接近时 (TCA) 的错失距离、组件化错失距离(例如,TCA 径向分离,即使在轨道内或轨道外分离或不确定性未知的情况下也能防止碰撞),以及最大碰撞概率和估计的真实概率。需要探讨的另一个关系是碰撞概率对 TCA 处卫星方向和配置/形状的依赖关系。由于不了解方向,计算碰撞概率时必须做出某些假设。一种常见的做法是用一个封装球体来近似航天器的硬体。这种一刀切的方法无需确定方向,但会导致物体体积被高估,概率被高估,除非两颗卫星实际上都是球体。为了产生更具代表性的概率,我们使用卫星的尺寸来定义一个包围的矩形框。通过投射比球体更小的区域,这种方法可以更准确地描绘实际的碰撞威胁,但缺点是必须在一定程度上准确了解盒子的方向。但即使选择产生最大可能覆盖范围的方向,盒子形状的概率也会低于球体。为了解决这个问题,我们估计了一系列对应于一系列方向的碰撞概率值,从中我们可以探索给定碰撞概率阈值所需的态度知识和位置精度之间的相互关系。

SSA 位置和尺寸精度要求

SSA 位置和尺寸精度要求PDF文件第1页

SSA 位置和尺寸精度要求PDF文件第2页

SSA 位置和尺寸精度要求PDF文件第3页

SSA 位置和尺寸精度要求PDF文件第4页

SSA 位置和尺寸精度要求PDF文件第5页