执行摘要 背景和目标 SESAR 运营概念 (CONOPS) 第 1 步文件提供了顶层指导,是所有与运营相关的 SESAR 任务的主要共同参考。目标是描述设想的 ATM 运营,以便民用和军用空域用户、服务提供商、机场、航空和 ATM 行业以及 SESAR 计划任务在 SESAR 开发的第一步中对 ATM 的运营特征以及它们在运营实践中暗示的主要变化以及它们所需的支持达成共识。同时,该概念认识到人类在未来系统中继续发挥的重要作用。程序将发生重大变化,未来的态势感知需求将与今天不同。SESAR CONOPS 可以看作是 ICAO 全球空中交通管理运营概念的具体应用,经过改编和解释,适合欧洲,并充分考虑到全球互操作性的需要。CONOPS 还旨在描述 SESAR(欧洲)对“航空系统模块升级”的投入,该升级描述了一套空中交通管理解决方案。该文件由 SESAR WP B4.2 创建。我们的目标是创建一个结构化的文件,便于管理层和专家层使用。
本文档介绍了“按轨迹管理” (MBT),这是未来空中交通管理 (ATM) 的一个概念,其中每个航班都按照四维轨迹 (4DT) 运行,该轨迹由空域用户和联邦航空管理局 (FAA) 协商确定,以尊重空域用户的目标,同时遵守国家空域系统 (NAS) 的限制。在当今的 NAS 中,ATM 系统尝试根据批准的飞行计划和预定或控制的起飞时间预测每个航班的轨迹。但是,一旦飞机开始移动,管制员就会对飞机进行战术管理,以实施交通管理限制、分离原本有冲突的飞机并解决出现的 NAS 限制。战术管制员的行动不会直接传达给自动化系统或其他利益相关者。此外,初始轨迹预测不会预测这些中断或它们将如何影响飞行。因此,再加上所需数据和模型的差距,轨迹预测的准确性低于可能的水平,从而影响交通流量管理 (TFM) 的性能。 MBT 概念的基石是,所有飞行器始终具有从其当前状态到其目的地的指定 4DT。这些指定轨迹由轨迹约束和描述组成。飞行员和空中交通管制员在自动化的帮助下操作飞机以遵守指定
本文件包含机场电池或氢动力飞机(非直接航空清洁能源 2 )的运营概念 (CONOPS),并强调了一些所需的变化,以及一些预计不会改变的方面(仅考虑固定翼客机,不包括电动垂直起降飞机 (eVTOL))。本文件涉及的机场运营包括着陆、滑行、到达停机位和在登机口停车、乘客下机、飞机维修、加油/充电、乘客登机、后推、发动机启动、滑行和起飞。其中还包括一章关于异常和紧急运营的内容,以及列出世界各地涉及氢或电池用于航空的举措的附录,包括标准、研究项目和行业举措。本文件描述了有关这些飞机如何在地面运行的当前知识状态,并强调了在机场运营的每个阶段发现的多个差距。本《概念操作》的主要目标是帮助国际民航组织为实现将这些飞机概念全面融入机场所需的监管变革铺平道路(特别是附件 14 ) 3 。该文件是分析、确定和规划全球规定的第一步,必要时,以促进氢动力和电池驱动飞机的安全、高效和及时整合。
未来海上作战概念 2025 (FMOC) 是 ADF 的长期海上联合作战能力愿景。FMOC 旨在为海军、陆军和空军参谋人员以及能力开发小组提供信息和指导,帮助他们制定未来 ADF 在海上环境中的能力要求。虽然海军领导 FMOC 的开发,但这是一项联合协作工作。FMOC 是未来联合作战概念 (FJOC) 的一个子集。它支持互补的环境概念:陆军主导的未来陆地作战概念和空军主导的未来空中和太空作战概念。FMOC 得到联合、单一服务和授权组织实验计划的支持。这些计划研究被评估为具有最大风险和/或不确定性的未来概念领域。实验结果为能力开发工作提供信息,并提高 FMOC 未来迭代的保真度。FMOC 2025 已获批准供能力开发人员在考虑 ADF 未来的海上能力需求时使用。我谨代表各军种参谋长委员会向您推荐 FMOC 2025。
无人机系统 (UAS) 在短时间内向公众和商业运营商开放,它们已成为创新的主要驱动力,并为社会带来了巨大利益,并将带来更多利益。然而,这些“无人机”飞行的空域已被许多其他人使用 - 通用航空 (GA)、直升机、军事演习、滑翔机和滑翔伞等。许多国家已经实施了法规,以确保这些新飞机安全地融入空域,无论是对其他飞机还是对地面上的人员和基础设施,确保维护人们的隐私,并将环境影响降至最低。这些基于国家的法规并不总是兼容的,其他法规需要在欧洲层面实施,以便在欧盟 (EU) 内发展一个共同的、开放的 UAS 市场。
美国联邦航空管理局 (FAA) NextGen 办公室于 2020 年 6 月发布了城市空中交通 (UAM) 的初始运营概念 (ConOps) v1.0,以描述新的未来运营环境。UAM 是先进空中交通 (AAM) 的一个子集,先进空中交通 (AAM) 是由美国联邦航空管理局、美国国家航空航天局 (NASA) 和业界共同发起的一项计划。AAM 计划旨在开发一种空中交通系统,利用创新的飞机、技术和运营,在以前没有航空服务或服务不足的地方、区域、区域内和城市地区之间运送人员和货物。虽然 AAM 支持城市和农村环境内和城市与农村环境之间的各种客运、货运和其他运营,但 UAM 专注于城市地区及其周边的飞行运营。UAM 愿景得到了引入一种称为可扩展交通管理 (xTM) 的合作运营环境的支持,该环境是对未来客运或货运运营/航班的传统空中交通服务 (ATS) 提供的补充。
虽然这项技术尚未在太空中应用,但已在地球上进行过多次模拟现场测试。2008 年,首次月球 ISRU 表面操作模拟现场测试在夏威夷由 NASA、加拿大航天局 (CSA) 和德国空气和空间研究中心 (DLR) 开发的场地进行 [5]。这次测试的目的是展示原型硬件和端到端运行的集成系统的操作,该系统具有以下功能:挖掘材料、生产氧气和储存产品 [5]。其中一个原型系统是洛克希德·马丁宇航公司的 Precursor ISRU 月球氧气试验台 (PILOT),它使用翻滚反应器混合和加热风化层 [5]。另一个测试的原型是 NASA 的 ROxygen,它使用垂直反应器而不是像 PILOT 那样的旋转反应器。垂直反应器与流化床和内部螺旋钻一起使用 [5]。在试验中,PILOT 完成了六次反应堆操作,而 ROxygen 完成了五次。由于模拟现场试验之前系统验证有限,两个系统都未能成功电解提取的水。然而,当用去离子水进行测试时,其他系统功能是有效的 [5]。
1 国家可再生能源实验室综合移动科学中心,科罗拉多州戈尔登 80401;电子邮件:Stanley.Young@nrel.gov 2 国家可再生能源实验室计算科学中心,科罗拉多州戈尔登 80401;电子邮件:Erik.Bensen@nrel.gov 3 北卡罗来纳大学夏洛特分校系统工程与工程管理系,北卡罗来纳州夏洛特 28223;电子邮件:Lei.Zhu@uncc.edu 4 爱荷华州立大学土木、建筑与环境工程系,爱荷华州埃姆斯 50011;电子邮件:cmday@iastate.edu 5 自动移动系统有限责任公司,德克萨斯州休斯顿;电子邮件:jsamlott.amsllc@gmail.com 6 国家可再生能源实验室国家风能技术中心,科罗拉多州戈尔登 80401;电子邮件:Rimple.Sandhu@nrel.gov 7 国家可再生能源实验室计算科学中心,科罗拉多州戈尔登 80401;电子邮件:Charles.Tripp@nrel.gov 8 国家可再生能源实验室计算科学中心,科罗拉多州戈尔登 80401;电子邮件:Peter.Graf@nrel.gov
融合威胁流 ................................................................................................................ 21 融合技术 ................................................................................................................ 31 合作伙伴和安全联盟 ................................................................................................ 39 增强创新基础 ........................................................................................................ 45 培养 21 世纪劳动力 ...................................................................................................... 55 财务交易和收购改革 ...................................................................................................... 63 运营概念 ...................................................................................................................... 71
摘要:向新类别的空域用户开放天空是欧盟的政治和经济当务之急。根据最新估计,无人机行业具有巨大的经济增长潜力。为了安全有效地实现这一增长,CORUS 项目制定了一套针对在欧洲低空飞行的无人机的运营概念,这些无人机必须与载人航空共享该空间,并且很快还要与城市空中机动飞机共享该空间。U 空间服务和智能、自动化、可互操作和可持续的交通管理解决方案的开发被视为实现这一高水平集成的关键推动因素。在本文中,我们介绍了围绕三种新型空域体积(称为 X、Y 和 Z)产生的 U 空间运营概念 (ConOps),以及每种空域体积中需要提供的相关 U 空间服务。本文还利用欧洲空中交通管理架构方法论描述了参考高级 U-space 架构。最后,本文提出了各卷适用的飞机分离标准的基础,供 U-space 的冲突检测和解决服务使用。