本文从理论和实验两个方面研究了 C 4 + 与氢原子碰撞的电荷转移过程。我们的理论研究基于电子-核动力学方法,该方法用于研究态间和总电子捕获截面的贡献。我们的理论结果与 C 4 + 与氢原子碰撞的绝对总截面的实验测量结果相辅相成,该测量采用离子原子合并束技术,在橡树岭国家实验室的改进设备中以相对碰撞能量 0.122–2.756 keV/u 进行。我们发现,在实验结果中,在碰撞能量为 0.5 keV/u 附近观察到的结构是由于 3 ℓ 捕获截面、电子和核动力学的耦合以及实验配置中的接受角的综合贡献。我们还报告了 C 4 + 的动能损失和停止截面。我们发现,C 4 + 在相对碰撞能量介于 0.1 至 10 keV / u 之间时会获得能量,最大值为 ∼ 1 keV / u。我们的理论研究表明,要与合并光束实验结果进行比较,必须考虑合并路径长度对仪器的影响。
BARYON数量波动的累积物是在有限密度下实验探索QCD相图的良好探针,从而产生与可能的临界端点(CEP)相关的特征波动模式。我们使用全息QCD模型来计算有限温度和重型化学电位的高阶重子数敏感性,以解决强耦合QCD物质的非扰动方面。该模型可以在定量水平上准确面对晶格QCD数据,并且发现CEP的位置落在即将进行的实验测量的范围内。计算到第十二阶的重子数敏感性,并沿化学冷冻线检查了这些敏感性不同比率的碰撞能量依赖性。全息结果显示与实验数据的定量一致性,功能重新归一化组导致较大的碰撞能量范围,所有比率均显示出峰值结构约为5-10 GEV。我们的全息结果与实验数据之间的不匹配是由于非平衡效应和复杂的实验环境所致。未来通过低碰撞能量范围内测量的实验√sN≈1-10GEV和降低的实验不确定性可能会揭示更多的非单调行为信号,这些信号可用于定位CEP。
摘要。na61 / Shine是Cern SPS的多功能固定目标设施。NA61 / Shine强相互作用计划的主要目标是发现强烈相互作用的物质的关键点以及研究解剖学发作的特性。为了实现这些目标,在核核,质子 - 普罗顿核和质子核的相互作用中对强子产生特性进行了研究,这是碰撞能量和碰撞核的大小的函数。在此贡献中,提出了强大的相互作用测量程序引起的Na61 / Shine。,讨论了p + p,be + be,ar + sc和pb + pb的最新反应,以及在间歇性,间歇性,高阶的倍增性膨胀和观众诱导的电磁效果上的高阶力矩。
摘要:NA61/SHINE 是 CERN SPS 的一个多用途固定目标设施。NA61/SHINE 强相互作用计划的主要目标是发现强相互作用物质的临界点以及研究解除约束的起始特性。为了实现这些目标,研究了在原子核-原子核、质子-质子和质子-原子核相互作用中,强子产生特性随碰撞能量和碰撞原子核大小的变化。本文介绍了强相互作用测量计划的 NA61/SHINE 结果。特别讨论了不同反应 p + p、Be + Be、Ar + Sc 和 Pb + Pb 对强子光谱、间歇性、多重性涨落的高阶矩和观察者引起的电磁效应的最新结果。
天体物理环境中分子光谱的准确建模需要详细了解碰撞能量转移过程,由于量子机械计算的计算复杂性,对于较大的分子,较重的弹丸和较高的碰撞能量,这仍然是一个重大挑战。本论文通过开发和应用混合量子/经典理论(MQCT)来应对这一挑战,这是一种混合方法,结合了内部分子运动的量子机械处理与自由转化程度的经典描述。首先通过详细研究ND 3 + D 2系统中的旋转能量转移来验证该方法,这表明了与完全量子结果的极好的一致性,同时提供了显着的计算优势。在新版本的MQCT代码中制定并实现了计算状态到国家过渡矩阵的替代方法,从而提高了复杂散射计算的计算效率。mqct扩展到天文学重要的H 2 O + H 2系统,迄今为止最全面的计算,包括200个水的旋转状态和H 2的旋转状态至𝑗= 10,以达到12,000 cm -1的碰撞能量。这项工作大大扩展了现有的碰撞数据库,并对高度激发的H 2分子进行了首次详细分析。结果表明,H 2 O中旋转过渡的速率系数随着H 2的旋转激发而增加,通常超过地面值的速度,在高温天体物理环境中对水进行建模的至关重要信息。系统分析方法来表征碰撞能量转移,这表明横截面的值不仅与能量差距δ𝐸相关,而且与量子数δ𝑗和δ𝜏的变化相关。这项工作中为H 2 O + H 2生成的状态转型速率系数的数据库是对天体物理群落使用的分子数据集的重要贡献。这项工作促进了MQCT作为一种功能强大且具有计算有效的工具,用于研究复杂的分子碰撞系统,这些工具具有完整的量子方法,可以促进在不同天体物理环境中建模分子碰撞的能力。
由于欧洲立法打击气候变化,电动汽车(EV)将来将在日常出行中发挥重要作用(Schwedes等,2021; Kampker等,2018)。通过消除低范围的决定性劣势来增加人口中的电动汽车的接受是有利的(Haustein和Jensen,2018年)。实现这一目标的一种成本效益和快速的方法是,使用轻巧的材料(如AFS)作为这种方法的一部分减轻了车辆的重量(VDI,2014年)。由于其对车辆整体重量的主要影响,电池外壳代表了通过减轻体重来增加范围的有希望的起点。整体车辆重量减轻的积极副作用是由于碰撞能量较低,制动距离和较低的轮胎磨损而导致的严重损坏和影响(Justen andSchöneburg,2011; VDI,2014; Sutschet等人,2023年)。
我们给出了色玻璃凝聚态有效理论中相对论重离子碰撞中初始色场的色玻璃能量动量张量的简明公式。我们采用具有非平凡纵向相关性的广义 McLerran-Venugopalan 模型,推导出弱场近似下对称核碰撞的 ð 3 + 1 Þ D 动态演化的简明表达式。利用蒙特卡罗积分,我们以前所未有的细节计算了 RHIC 和 LHC 能量下早期可观测量的非平凡快速度分布,包括横向能量密度和偏心率。对于具有破坏增强不变性的设置,我们仔细讨论了 Milne 框架原点的位置并解释了能量动量张量的分量。我们发现纵向流动与标准 Bjorken 流动在 ð 3 + 1 + D 情况下有所不同,并提供了这种影响的几何解释。此外,我们观察到快速度剖面侧面的普遍形状,无论碰撞能量如何,并且预测极限碎裂也应在 LHC 能量下保持。
最近,有研究表明,在非中心相对论重离子碰撞中,椭圆流 v 2 在有限快速度下会分裂,这是由于全局涡度所致。在本研究中,我们发现有限快速度下椭圆流的这种左右(即在撞击参数轴的两侧)分裂是由于非零定向流 v 1 所致,其分裂幅度 ≈ 8 v 1 (1 − 3 v 2 ) / (3 π )。我们还使用多相传输模型(该模型自动包含涡度场和流动波动)来确认 v 2 分裂。此外,我们发现,对于相对于一阶或二阶事件平面测量的原始 v 2 和 v 1(即在应用事件平面解析之前),v 2 分裂的分析预期都成立。由于 v 2 分裂主要是由 v 1 驱动的,因此它在零横向动量( p T )时消失,而且它的大小和符号可能对 p T 、中心性、碰撞能量和强子种类具有非平凡的依赖性。