开发先进的下一代 LA 电解器以克服上述限制的关键研发机会包括:开发新材料、改进组件界面以及设计新型电池和堆栈。需要进行更多基础诊断研究,以将性能与材料和界面特性关联起来并了解降解机制。此类研究将为新型电池和堆栈组件的材料开发工作提供参考。隔膜和催化剂尤其被强调为历史上未得到充分开发的材料,具有巨大的进步机会。材料的表征和测试应在相关操作条件下使用标准化协议进行,包括下一代 LA 系统预期的操作条件(例如间歇操作、
- 调查中的示例案例:阴离子交换膜电解1。基于降解2。确定恒定电压(效率)与恒定电流(生产)操作3。确定最有影响力的参数,并在H2A模型和性能模型4之间建立相互作用。贯穿指定的操作条件范围,以确定最低的H2成本
一家安全,健康与环境研究所,胡志明市,越南B纳里技术开发公司有限公司,南京,江苏210012,中国c供水,卫生与环境工程部,伊尔德尔特水供应,卫生与环境工程系泰米尔纳德邦632014,印度E环境健康研究中心,库尔德斯坦医学科学研究所,库尔德斯坦库尔德斯坦省库尔德斯坦省库尔德斯坦省72m2 mhq,伊朗应用科学学院72m2 mhq越南 *通讯作者。电子邮件:nguyentanphong@tdtu.edu.vn
因为激光培养基(例如激发氧气)是由化学反应产生的。然而,尽管他们在上个世纪进行了深入的研究,但期望很快就会失望,因为可以使这种激光器运行的物流非常繁琐。在21世纪初,纤维激光技术取得了革命性的进步。现在,市售的纤维激光器达到100 kW。军事部门也注视着这一进展,并且已经开发了许多基于纤维激光器的防御激光原型。这些激光器中的一些现在处于部署阶段。但是,在限制限制的输出功率方面,纤维激光器有一个基本限制。Dawson等。 [1]理论上表明单模(Di raction-limimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimim Plaser C BLASER都无法超过36 KW。 现有的防御激光原型束缚了多纤维激光器,其光束质量远非不同的限制。 与高功率纤维激光繁荣同时,出现了一种新的气体激光概念。 它被命名为“二极管泵的碱性激光(DPAL)”。该激光器具有可伸缩性,可与具有差异限制的光束质量的化学激光器相当,但通过高度有效的电驱动激光二极管(LD)泵送。 在本文中,讨论了DPAL的原则,历史,当前情况和拟议的应用。Dawson等。[1]理论上表明单模(Di raction-limimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimim Plaser C BLASER都无法超过36 KW。现有的防御激光原型束缚了多纤维激光器,其光束质量远非不同的限制。与高功率纤维激光繁荣同时,出现了一种新的气体激光概念。它被命名为“二极管泵的碱性激光(DPAL)”。该激光器具有可伸缩性,可与具有差异限制的光束质量的化学激光器相当,但通过高度有效的电驱动激光二极管(LD)泵送。在本文中,讨论了DPAL的原则,历史,当前情况和拟议的应用。
摘要:氢是绿色能源的未来,可再生技术的用途之一是通过电解产生氢。水电解液是氢生产与电源波动之间直接能量相互作用的关键组成部分。最后,即使在相同的电流密度下,激活势也高出80%。这项研究旨在研究I-V的特征以及欧姆和激活潜力对晚期碱性电解酶性能的影响。基本热力学和电化学反应方程用于对晚期碱性电解核进行建模并模拟MATLAB。与针对相同的实验数据集测试的公开模型进行了比较,该模型看起来很完美。关键字:碱性电解核,I-V特性,MATLAB,激活潜力,欧姆电位。
地球聚合物是从天然矿物质(粘土),废物或工业副产品的碱性激活获得的低碳粘合剂,以生成具有陶瓷特征的产品[1,2]。铝硅酸盐类型的反应性化合物迅速溶解在碱性溶液中,并形成Si型(OH)4-和Al(OH)4- [3,4]的羟基化低聚物。在多质量反应期间,四面体单元交替结合,形成构成地球聚合物的无定形格子。近年来,随着具有较低能量消耗和强大特性的粘合剂,地质聚合物已引起了很多关注,包括良好的机械性能,低液体渗透性,对高温的抵抗力和其他酸的攻击[5] [5],并大大降低了CO 2排放,更环保友好友好的材料[6 E 9]。高岭土和其他天然粘土,在通过热处理转化为梅托蛋白和钙化粘土后,低钙灰灰是合成地球聚合物的最常见前体[10]。近年来,重点一直放在高可用的原材料上,例如钙化粘土[11,12]。粘土通常由粘土矿物和其他相关的混合物组成[13]。与高岭土不同,粘土的主要缺点用作获得地球聚合物的先驱是组成的变异性和控制热激活过程的参数的控制。常用的粘土被用作地球聚合物前光照器,必须将其钙化以完全脱氢氧化,以避免形成新的稳定相,例如尖晶石[13 E 15]。因此,Buchwald等。在500至800 C之间的粘土矿物质的热激活通常会导致粘土矿物的脱羟基化[16]。其他作者研究了粘土的碱性激活。[17]研究了在550至950 c之间热激活的伊利石/蒙脱石粘土的适用性,形成地球聚合物。Essaidi等。[18]研究了在不同温度下激活的高岭土粘土和富含赤铁矿的伊利石 - 氯化粘土的碱性激活。得出的结论是,由于粘土矿物质的非晶化,Illite-Kaolinitc粘土的反应性优于高岭土粘土的反应性,获得了具有更好的机械性能的材料。Selmani等。[9]评估了两个商业元评估和三个突尼斯粘土,具有不同的化学成分,纯度和反应性,以确定它们用于地球聚合物合成的潜力。用粘土取代梅托氏蛋白,有利于多面反应。所使用的碱性激活剂是强碱性溶液,碱氢氧化物或水合碱硅酸盐。然而,由于需要高于1300℃的温度,因此通过非常昂贵且高度污染的生态过程进行了用作活化剂的碱性硅酸盐的产生,将大量CO 2排入大气中。因此,需要寻找新的替代激活解决方案,而环境和经济影响较小。改善碱性或碱性水泥的经济和生态平衡的一种方法是为传统碱性激活剂找到碱性(总或部分)。近年来,使用生物质来产生热量和电力,以便施加废物并减少CO 2排放
摘要:本文提出了一种控制策略,可减轻高压碱性电解槽中 H 2 和 O 2 的交叉污染,从而提高供应气体的纯度。为了减少气体通过膜的扩散,控制器根据系统压力和两个分离室之间的液位差来确定两个出口阀的开度。因此,这里设计了一个多输入 - 多输出最优控制器。为此,简化了一个可用的高保真模型,以获得一个面向控制的模型。在宽工作范围内使用高保真非线性模型对所提出的控制器进行了模拟评估,并与一对解耦 PI 控制器进行了比较。在所有情况下,产生的气体杂质均低于 1%。
a 南洋理工大学机械与航空航天工程学院,639798,新加坡 b 佛山科学技术学院材料科学与能源工程学院,佛山 528000,中国 c 中山大学材料学院,广州 510275,中国 d 宁波大学海运学院,宁波 315211,中国 e 南洋理工大学电气与电子工程学院微纳电子中心(NOVITAS),639798,新加坡 f CINTRA CNRS/NTU/THALES,UMI 3288,Research Techno Plaza,637553,新加坡 * 通讯作者。Hong Li:ehongli@ntu.edu.sg 关键词:PV-LIB-AWE;太阳能制氢;集成系统;多功能催化剂。
fraunhofer i ns ti ti ti f o r m a n u fa c t u r i n g t e c h n o lo lo g y