Greenko 集团是全球最大的能源存储公司,也是全球最大的清洁能源供应商之一。该公司致力于通过智能能源平台和绿色氢气生产系统,为企业和国家提供碳中和解决方案,实现净零排放目标。Greenko 集团的太阳能、风能和水力发电技术装机容量为 7.3 吉瓦,遍布 15 个州的 100 多个项目,每年提供 200 多亿单位的可再生能源,占印度总电力需求的约 1.5-2%。Greenko 致力于将风能等间歇性能源转化为可靠、可调度和按需的能源,并通过数字化和长期存储进行控制。作为其氢能战略的一部分,Greenko 还将在下一财年投资开发一个 1MTPA 氨生产设施,用于生产绿色氨。
氢气也有望在可再生能源的发电,运输,加热和缓冲中发挥更重要的作用[2]。目前,所产生的氢的大多数(95%)是所谓的灰氢。这意味着在生产过程中释放温室气体。绿色氢是通过用可再生能量拆分来产生的[1]。Mueller-Langer等。[5]对氢生产进行了技术经济评估,并得出结论,水电解在近期和中期将起重要作用。这是由于它能够生成高纯氢的能力以及它是一种完善的技术[6]。目前,市场由聚合物电解质膜(PEM)和碱性电解主导。后者是一种强大而验证的技术[7]。碱性电解也不同于其他
主要碱性电池由于其低成本和安全性而被广泛用于便携式电子产品中。这些电池的消耗和处置促使其回收利用了显着的研究。减少碱性电池处置的另一种方法是通过增加其能量密度来延长其寿命。在这项工作中,通过通过多物理学建模确定最佳电极材料的最佳量,可以最大程度地提高AA主要碱电池的能量密度。在comsolMultiphysics®中开发了碱性电池的电化学模型,并用在恒定电阻载荷下获得的排放曲线(即电压与时间)进行了验证。然后对电极厚度进行优化,以最大化电池的能量密度,同时保持其外部尺寸。能量密度相对于电极孔隙率和界面区域的灵敏度。电化学模型能够复制在250 mA恒定电流放电下获得的放电曲线。通过减小锌阳极的厚度,能量密度最大化。但是,这会导致阳极在电流收集器附近溶解,并可能损害电池中的电连续性。增加阳极厚度可防止当前收集器的溶解,但在电池中增加了质量。这项研究的结果可用于开发更长的碱性电池。此外,可以通过考虑热效应或修改以帮助开发可充电碱性电池来改进该模型。
发现用于光电应用的基于铅的有机无机钙钛矿材料引发了光伏材料研究的革命。尽管它们具有出色的材料,例如强光吸收,长期充电载体寿命与高载流子迁移率结合使用,生产成本较低,长期不稳定以及铅的毒性目前妨碍了他们在工业试验量表中的部署。[1]为了克服这一缺点,已提议将双重钙蛋白酶与一般的For-Mula A 2 1 + M 1 + M'3 + X 6提议为候选材料,可在perovskites的大量扩展研究领域提供无铅替代方案。在钙钛矿目录的该分支中研究的第一批材料之一是CS 2 Agbibr 6,显示了设备[2,3]的高稳定性[2,3]和低有效的载体质量[4],其长载体重组寿命
在错误校正后的逻辑Qubits上执行量子算法是可扩展量子计算的关键步骤,但是对于当前的实验硬件,Qubits和物理错误率的必要数量和物理错误率要求。最近,针对特定物理噪声模型量身定制的错误纠正代码的开发有助于放松这些要求。在这项工作中,我们为171 yb中性原子量子A的量子编码和栅极协议提出了将主要物理误差转换为擦除,即已知位置的错误。关键思想是在亚稳态的电子水平上编码Qubits,以便门错误主要导致向不相交子空间的过渡,这些子空间可以通过荧光连续监测其种群。我们认为,98%的错误可以转换为擦除。我们通过表面代码的电路级模拟量化了这种方法的好处,从而发现阈值从0.937%增加到4.15%。我们还观察到阈值附近的较大代码距离,从而使相同数量的物理量子位的逻辑错误率更快降低,这对于近期实现非常重要。擦除转换应有益于任何错误纠正代码,并且还可以应用于在其他Qubit平台中设计新的门和编码。
©2021。此手稿版本可在CC-BY-NC-ND 4.0许可下提供http://creativecommons.org/licenses/by-nc-nc-nd/4.0/。
材料中,CNCs的排列起着至关重要的作用。到目前为止,已证明有几种有效的方法来排列CNCs,例如使用铸造蒸发法[6]、剪切力[7]、磁场[8]和电场。[9]除了上述方法所需的复杂装置或CNC薄膜的固有脆性外,最近出现了一种基于液体行为辅助策略的排列CNCs的新方法。[10]使用动态水凝胶体系来驱动CNCs的排列,其中CNCs的取向由外力产生。当纳米材料在空气干燥后相对位置固定时,就得到了颜色可调的CNC混合薄膜。另一方面,为了克服从天然原料中分离CNCs的问题,例如苛刻的条件或高能耗,[11]我们开发了一种新的可回收、选择性的碱性高碘酸盐氧化方法,从而可以高产率地制备PO-CNCs。 [12] 然而,PO-CNCs 上羧基含量相对较少,削弱了水凝胶前体中 PO-CNCs 的稳定性,并且由于许多其他溶解化合物的存在,可能导致 PO-CNCs 聚集,这也给将 CNCs 均匀嵌入潜在光学器件材料带来了普遍挑战。由于水凝胶中 CNCs 的取向依赖于剪切力,因此要求水凝胶具有较高的拉伸性和足够的韧性。由于缺乏有效的能量耗散机制,传统水凝胶通常机械强度差、拉伸性低。[13] 因此,人们已采用各种策略(包括静电相互作用 [14] 双网络结构 [15] 滑环连接 [16] 和疏水缔合 [17])进行交联和能量耗散,以提高水凝胶的性能。为了简化CNCs与聚合物基质之间的相互作用,避免所得光学材料中过多的变量,一种通过共价键交联的聚丙烯酰胺(PAAm)水凝胶具有高透明度和适用的机械性能等优势,是通过液体行为辅助法对PO-CNCs进行取向的有希望的候选材料。[18]中性水凝胶前体溶液可使PO-CNCs稳定存在。此外,其他光学材料,如金纳米棒(GNR),也可以适应这种水凝胶体系,其中表面等离子体共振(SPR)将诱导可见光区域的光吸收。[19]因此,这种水凝胶
免责声明 本文件为美国政府机构赞助工作的记录。美国政府、劳伦斯利弗莫尔国家安全有限责任公司及其任何雇员均不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性做任何明示或暗示的保证,也不承担任何法律责任或义务,也不表示其使用不会侵犯私有权利。本文以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务并不一定构成或暗示美国政府或劳伦斯利弗莫尔国家安全有限责任公司对其的认可、推荐或支持。本文表达的作者观点和意见不一定代表或反映美国政府或劳伦斯利弗莫尔国家安全有限责任公司的观点和意见,不得用于广告或产品代言目的。
a. 中国科学技术大学,安徽合肥 230026。b. 上海精益电器厂有限公司,上海 201700。c. 机械工程学院工程热物理与新能源研究所
摘要 简介 哮喘是一种复杂的疾病,其表现/严重程度各不相同。人们对定义与不同治疗反应始终相关的哮喘内型的兴趣日益浓厚,重点关注 2 型炎症 (Th2) 作为一种关键病理机制。当前哮喘内型主要通过临床/实验室标准来定义。每种内型可能都具有独特的分子机制,从而确定最佳治疗方法。方法 我们对来自重度哮喘研究计划的 19 名哮喘患者在基线和 40 毫克剂量肌肉注射皮质类固醇后 6-8 周的痰液气道细胞 RNA 测序转录组数据进行了无监督(无先验临床标准)主成分分析。我们研究了主成分 PC1、PC3 与 55 个临床变量的关联。结果 PC3 与基线 Th2 临床特征相关,包括血液(秩和 p=0.0082)和气道(秩和 p=0.0024)嗜酸性粒细胞增多症、FEV 1 变化(Kendall tau-b R=−0.333(−0.592 至 −0.012))和后续 FEV 1 沙丁胺醇反应(Kendall tau-b R=0.392(0.079 至 0.634))。PC1 与血液嗜碱性粒细胞增多症相关(秩和 p=0.0191)。对 PC1、PC3 贡献最大的 5% 基因在不同的免疫系统/炎症本体中富集,表明对皮质类固醇的转录组反应存在不同的受试者特异性簇。 PC3 与 FEV 1 变化的关联在可比的独立 14 名受试者(基线,每日吸入皮质类固醇 (ICS) 后 8 周)气道上皮细胞 microRNAome 数据集中以计算机模拟方式再现。结论这种无监督方法的转录组 PC 定义了分子药物基因组内型,可能产生新的生物学基础,为哮喘中皮质类固醇治疗的不同受试者特定反应和最佳个性化哮喘护理提供基础。这些 PC 的主要贡献基因可能表明新的治疗靶点。