通过林业进行的碳固化代表了一种有希望的方法,可以部分抵消驱动气候变化的人为温室气体排放。树生长自然从大气中去除二氧化碳,将其作为生物量储存。可持续管理的森林可以有效地充当碳汇。但是,确定最佳林业政策涉及平衡复杂的生态动态与经济限制。这项研究开发了微分方程模型,以定量捕获森林生长,木材收获和碳固算动力学。逻辑模型首先是为了模拟代表性树种的生物量积累。生命周期的生长模式跨越了成熟的阶段,并结合了气候效应。生物量水平与大气中的二氧化碳去除率成正比。通过纳入收获诱导的生物量减少来分析森林砍伐的影响。实施可持续性限制,以确保收获旋转的最小可行树密度。优化技术然后确定给定生态稳定考虑因素最大化经济回报的管理指南。目标是为旋转长度,播种密度以及允许的削减量提供定量见解,以维持气候变化缓解和商业需求。发现可以为基于科学的林业政策提供信息,以利用森林作为可持续的天然碳汇。
Binder content ( B ) [kg/m 3 ] 303 321 361 344 313 413 Binder content ( b ) [wt.%] 12.5 13.2 14.8 14.3 12.9 16.9 Clinker content in binder ( c [wt.%] 95 73 15 67 67 24 Clinker content in concrete [wt.%] 11.9 9.6 2.2 9.6 8.6 4.1 CaO content在Binder(CAO)[wt。%] 64.8 48.9 45.1 46.9 57.8 47.3混凝土中的CAO含量[wt。%] 8.1 6.5 6.5 6.7 6.7 6.7 6.7 7.5 8.0 8.0
幼虫在整个海洋中都很丰富。幼虫在研究中被忽略了,因为它们很难进行,并且被认为在生物地球化学周期和食物奖中并不重要。我们综合证据,表明它们的独特生物学使幼虫可以将更多的碳转移到更高的营养水平,而深入海洋,而不是通常所欣赏的。幼虫在人类世可能变得更加重要,因为他们吃的小浮游植物被预计在气候变化下会更加普遍,从而减轻了预计的预计未来在海洋生产力和薄片中的下降。我们确定了批判性知识差距,并认为应将幼虫纳入生态系统评估和生物地球化学模型中,以改善对未来海洋的预测。
结果:结果表明,不同植物物种和类型的碳固相能力表现出显着差异,p值小于0.05。就单位冠层投影面积的每日碳固隔而言,排名如下:常绿树>常绿灌木>落叶树>落叶灌木。对于总植物碳固存,排名是:常绿树>落叶树>常绿灌木>落叶灌木。常绿树在两个碳固存指标中表现出色,每日平均每单位碳固醇固定面积投影面积,整个植物分别为18.0024 g/(m 2·d)和462.28 g/d。该研究还观察到季节性变化,与春季和冬季相比,秋季和夏季的碳固剩速度更高。在夏季,每单位冠层投影面积的平均每日碳螯合物和整个工厂分别为11.975 g/(m 2·D)和161.744 g/d,而在秋季,这些值为13.886 g/(m 2·D)和98.458 g/d。季节性变化,与春季和冬季相比,秋季和夏季的碳固次率更高。此外,在四个居民区进行了CO 2浓度,从而提供了对碳固存的空间和时间动力学的见解。
结果:结果表明,不同植物物种和类型的碳固相能力表现出显着差异,p值小于0.05。就单位冠层投影面积的每日碳固隔而言,排名如下:常绿树>常绿灌木>落叶树>落叶灌木。对于总植物碳固存,排名是:常绿树>落叶树>常绿灌木>落叶灌木。常绿树在两个碳固存指标中表现出色,每日平均每单位碳固醇固定面积投影面积,整个植物分别为18.0024 g/(m 2·d)和462.28 g/d。该研究还观察到季节性变化,与春季和冬季相比,秋季和夏季的碳固剩速度更高。在夏季,每单位冠层投影面积的平均每日碳螯合物和整个工厂分别为11.975 g/(m 2·D)和161.744 g/d,而在秋季,这些值为13.886 g/(m 2·D)和98.458 g/d。季节性变化,与春季和冬季相比,秋季和夏季的碳固次率更高。此外,在四个居民区进行了CO 2浓度,从而提供了对碳固存的空间和时间动力学的见解。
景观管理中的关键问题,无论是公共还是私人,是对影响植被,生态系统健康以及因此生态系统服务(ESS)的干扰事件的缓解。尽管许多研究发现由于昆虫侵扰而导致的树木死亡率显着,但仍然对这些侵扰如何改变ESS及其相关的经济价值仍然没有足够的了解。解决这一研究差距可以帮助森林经理和决策者精炼和实施自适应管理实践和政策,同时增强森林及其ESS的弹性。我们调查了树皮甲虫暴发对三种ESS(木材供应,保留率和碳固存)在北加州和内华达州北部的Tahoe地区的影响。使用景观仿真模型Landis-II,我们研究了业务与惯常的管理方案和增强的管理场景之间的差异,该场景在地上树生物量和受甲虫暴发影响的ESS数量方面进行了研究。由于昆虫侵扰也受到气候的影响,因此两个管理场景中的每一个都认为三种不同的气候场景:一种具有平均历史气候的场景(没有气候变化);从气候跨学科研究模型中的较温暖,更湿的场景(Miroc);以及来自中心国家中心的较干燥,更干燥的场景(CNRM)。的结果表明,温暖,更干燥的气候导致甲虫引起的树木死亡率比潮湿,凉爽的气候更严重,从而对ESS产生更大的负面影响。每年的ES值估计损失约为0.2至80万美元。增强的管理层比业务态度更有能力,可以防止对树木和ESS的甲壳虫损害。
面对气候变化的不断升级威胁需要创新和大规模的交流。本文提出了一项大胆的建议,以在遥远的玄武岩海床中采用埋藏的核爆炸,以粉碎玄武岩,从而通过造型岩石风化(ERW)加速了碳固存。通过精确定位海底下方的爆炸,我们旨在弥补碎屑,辐射和能量,同时确保在足够的地表下迅速岩石风化,以使大气中的碳含量有意义。我们的分析概述了有效的碳捕获和最小的侧支效应所必需的参数,强调对Gigatons的收益率对于全球气候影响至关重要。尽管这种方法可能看起来很激进,但我们通过检查安全因素,保存当地生态系统,政治考虑和财务生存能力来说明其可行性。这项工作主张将核技术重新构想不仅是破坏力的力量,而且是脱碳的潜在催化剂,从而邀请进一步探索针对气候变化的领域中的开拓解决方案。
农林业可以通过减少4.1 mtco 2 e到2030的雄心将温室气体(GHG)排放降低32%。也有望为种植150亿棵树木的全国目标做出贡献,恢复了1,060万公顷的退化土地,其中农林业被分配了300万公顷,到2032年,将树木覆盖至30%(肯尼亚政府,2023年)。大规模实施农林业可以提高土壤的生育能力,作物产量增强了水周期,包括提供多种产品,从而改善农民生计和食品和食品和养分安全,并有助于气候应变。关于这些野心的一个重大挑战是监视和报告农林业的潜力。农林业系统很复杂,因为树木所在的树木所在以及相关的管理实践的土地使用。这种复杂性限制了将农林业限制在许多国家的国家温室气体清单中,从而影响了温室气体排放的两个基本方面。首先,是如何整合农业条约对现有农业,林业和其他土地使用部门的贡献的挑战。2020)。第二,在不同的农林业系统下缺乏碳库存和股票变化的数据,这限制了扩大农林业所需的财务和技术支持的访问(Rosenstock等人。2019)。数据的缺乏归因于缺乏对碳库存的量化(包括果树)的可靠方法。
美国和加拿大是亲密的合作伙伴,由5,525英里的边界以及共同的历史和价值观结合在一起。国家在北大西洋条约组织(北约)和北美航空航天防御司令部(NORAD)领导下保持了长期的共同安全承诺。美国和加拿大也是世界上最大的双边商业关系之一,平均每天超过25亿美元的商品和服务在2023年越过边境。美国加拿大合作的其他领域包括跨境执法和跨界自然资源的管理。鉴于加拿大与美国之间的高度整合,国会议员经常跟踪双边关系,并评估加拿大政策如何影响美国。
