纳米结构可能具有挑战性,因此计算机模拟在提供见解方面可以发挥重要作用。在本次演讲中,我将首先介绍动力学驱动生长中的一维、二维和三维 Ehrlich-Schwoebel (ES) 屏障。在这个框架内,我将展示如何有效地控制岛形、岛不稳定性以及薄膜粗糙度。此外,我将讨论一个新概念:金属表面上真正的向上吸附原子扩散,这超出了传统的 Ehrlich-Schwoebel (ES) 屏障模型。该过程提供了新的迹象,即如何使用从头算动力学蒙特卡罗模拟揭示原子尺度演化机制的一些构建规则。
为了在这个世界上生存和发展,人类一直努力了解自己是谁、是什么。这个持续的过程导致了某些规范、可接受的社会角色和行为模式的产生。性别概念就是这些规范之一,它是女性、男性、女孩和男孩的一组社会建构特征,在不同社会中各不相同,并会随着时间而变化[1-7],在流行文化和文学中发挥着重要作用[8,9]。性别流动的概念挑战了社会规范[10-17]。从二元的角度来看,性别流动可以定义为在不同时间拥有不同的性别认同[18]。例如,在某一时刻,一个人可能认为自己是女性,而在另一时刻,他们可能认为自己是男性。然而,一个人也可能同时认为自己是男性和女性,或者都不认为自己是男性和女性。这种身份转变可能发生在不同的时间尺度上:一天几次、每周、每月或每年[19]。事实上,性别流动更为复杂。然而,尽管尝试利用复杂系统领域的方法来理解它,但其复杂程度尚未确定[20]。
摘要。磁法是最古老和最广泛使用的地球物理技术之一,用于勘探地球地下。它是一种相对简单且廉价的工具,适用于各种地下勘探问题,涉及从地壳底部附近到土壤最上层一米内的水平磁性变化。成功应用磁法需要深入了解其基本原理和仔细的现场工作、数据缩减和解释。通常,解释仅限于定性方法,这些方法只是绘制异常地下条件的空间位置,但在有利情况下,该方法的技术状态将允许更多的定量解释,包括指定异常源的性质。没有其他地球物理方法为如此广泛的问题提供关键输入。然而,磁法很少能为调查问题提供完整的答案。因此,它通常与其他地球物理和地质数据一起使用,以限制其解释的模糊性。
1 维也纳大学物理学院,A-1090 维也纳,奥地利 2 国家标准与技术研究所,美国科罗拉多州博尔德 80305 3 科罗拉多州立大学物理系,美国科罗拉多州柯林斯堡 80523 4 维也纳大学 MMM 数学-磁性-材料研究平台,奥地利维也纳 1090 5 imec,比利时鲁汶 3001 6 杜伦大学物理系,英国杜伦 DH1 3LE 7 哥德堡大学物理系,瑞典哥德堡 412 96 8 马德里自治大学 Nicolás Cabrera 研究所 (INC) 和凝聚态物理研究所 (IFIMAC) 凝聚态物理系 C-III,西班牙马德里 9 法国国家研究中心巴黎萨克雷泰雷兹大学法国国家科学研究院,91767 帕莱索,法国 10 慕尼黑工业大学物理系,85748 加兴,德国 11 SN Bose 国家基础科学中心凝聚态物理与材料科学系,加尔各答 700106,印度 12 日本东北大学材料先进研究所,仙台 980-8577,日本 13 格罗宁根大学泽尔尼克先进材料研究所,9712 CP 格罗宁根,荷兰 14 慕尼黑工业大学电气与计算机工程系,80333 慕尼黑,德国
磁振子学是研究自旋波的物理特性并利用其进行数据处理的科学领域。可扩展至原子尺寸、从 GHz 到 THz 频率范围的操作、非线性和非互易现象的利用、与 CMOS 的兼容性只是磁振子提供的众多优势中的一小部分。尽管磁振子学仍然主要定位于学术领域,但该领域所涵盖的科学和技术挑战范围正在得到广泛研究,许多概念验证原型已经在实验室中实现。本路线图是许多作者共同努力的成果,涵盖了多功能自旋波计算方法、它们的概念构建块以及底层物理现象。特别是,路线图讨论了使用布尔数字数据的计算操作、神经形态计算等非常规方法以及基于磁振子的量子计算的进展。本文由七个大主题部分组成的子节集合组成。每个小节由一位或一组作者准备,并简要描述当前的挑战和研究方向进一步发展的前景。
SQUID:约瑟夫森效应是由于量子力学隧道效应,超电流在两个弱连接的超导体之间流动的现象。 B.D.约瑟夫森因发现这一效应获得了1973年诺贝尔物理学奖。 SQUID(超导量子干涉装置)利用约瑟夫森效应产生的量子干涉,被称为超灵敏磁场传感器,其分辨率可达5aT(5×10-18T)。这是一种广泛用作MEG(脑磁图)和MCG(心磁图)的传感器。 心磁图 (MCG) 自 2003 年起在日本纳入保险范围。用于诊断心律失常、心力衰竭和心肌梗塞。脑磁图 (MEG) 于 1990 年代引入日本。自 2000 年以来,它已成为多通道。2004 年,术前神经磁诊断设备纳入保险范围。2012 年,保险范围扩大到包括感觉和运动障碍的诊断。
摘要。磁法是最古老和最广泛使用的地球物理技术之一,用于勘探地球地下。它是一种相对简单且廉价的工具,适用于各种地下勘探问题,涉及从地壳底部附近到土壤最上层一米内的水平磁性变化。成功应用磁法需要深入了解其基本原理,并进行仔细的实地工作、数据缩减和解释。通常,解释仅限于定性方法,这些方法只是绘制异常地下条件的空间位置,但在有利的情况下,该方法的技术状态将允许更多的定量解释,包括指定异常源的性质。没有其他地球物理方法可以为如此广泛的问题提供关键输入。然而,磁法很少能为调查问题提供完整的答案。因此,它通常与其他地球物理和地质数据一起使用,以限制其解释的歧义。
第 16 届 MMM-INTERMAG 联合会议(2025 联合)由 AIP 出版公司和 IEEE 磁学学会联合主办。MMM-Intermag 联合会议每三年召开一次,是两个年度顶级国际磁学会议的合并:IEEE 国际磁学会议 (Intermag) 和磁学与磁性材料会议 (MMM)。对基础和应用磁学最新发展感兴趣的国际科学和工程界成员将受邀参加技术会议并做出贡献。技术计划将包括口头和海报会议的受邀和投稿论文、受邀研讨会、教程、全体会议和几个特别会议。这次会议为世界各地的参与者提供了一个绝佳的机会,让他们可以见面、分享他们的研究成果,并讨论和了解磁学研究各个领域的最新发展。
在量子磁学实验室 (LQM),我们进行磁学和相关电子材料的基础研究。我们的核心活动包括新材料的合成、内部实验技术、低温、高压和高磁场、中子和 X 射线散射以及理论和建模。LQM 隶属于洛桑联邦理工学院 (EPFL),该学院是世界著名的研究和教育中心,提供理想的学术环境以及与工业的良好联系。