人们认为,诱导磁层的磁场以叠加场为主。理论上,这种叠加场的方向应该与行星际磁场的 yz 方向一致。然而,观测表明,诱导磁层的磁场方向与行星际磁场方向相反。利用天问一号和 MAVEN 的联合观测,我们获得了火星诱导磁层在精确 MSE 坐标系下的平均磁场图,并计算了其标准差。标准差证实了平均磁场分布与稳态假设一致。磁场图显示,平均磁场在 yz 平面上顺时针旋转,发生在火星诱导磁层的白天和夜间。根据磁感应方程,当磁层内等离子体流速存在差异时,就会发生磁场的这种顺时针旋转。值得注意的是,其他非磁化行星的感应磁层表现出与火星相似的定性特性,表明它们具有可比的磁场特征。
摘要在理论上对大规模电磁场和等离子体之间的能量交换负责的基本过程在理论上是充分理解的,但实际上尚未对这些理论进行测试。这些过程在所有等离子体中都是无处不在的,尤其是在行星磁圈和其他磁性环境中高和低β等离子体之间的接口。尽管这种边界遍布等离子宇宙,但尚未完全识别导致储存磁和热等离子体能量的过程,并且每个过程的相对影响的重要性尚不清楚。尽管通过在磁重新连接中转换为磁到动能来理解能量释放方面,但过渡区域中拉伸和更松弛的田间线之间的极端压力如何平衡,并通过血浆和田地的绝对对流来释放并释放。必须测试最新的理论进步和大规模不稳定性的预测。本质上,负责的过程仍然很少理解,问题尚未解决。白皮书的目的提交了ESA的2050年航行电话,以及本文的内容是突出三个出色的开放科学问题,这些问题显然是国际兴趣的:(i)当地和全球等离子体物理学的相互作用:(ii)电子磁性对转换过程中电子磁性和质子质量能量之间的分配过程中的分配量和plasma Energy之间的分配量和(III II III和(III II II)和(III II)和(III)和(iii and conteres and corte and corte and conteres and(III II)。我们对当前最新的新测量和技术进步进行了讨论,以及这些国际高优先科学目标可以大大提高的几个候选任务概况。
磁性材料已知数千年。,由于它们在电动机,传感器和计算机等设备中的广泛使用以及常规的冰箱磁铁,它们在当今世界中起着重要作用。对在铁磁材料中的应用(即自旋波)中的应用非常希望。如今,大多数计算单元基于电子设备。 然而,由于使用高功率密度和高电压相关的局限性,可能很快就不可能对综合电路进行进一步的小型化。 旋转波的最大优势是它们的非常低的能量,加上微波频率中数百甚至数十纳米的波长,可以设计出比电子设备设计具有明显低于电子设备的纳米级设备的可能性。 在过去的二十年中,科学家特别强调了基本宏伟设备的设计,例如定向耦合器,二极管,晶体管或逻辑门,这些设备可以在宏伟的集成电路中找到应用。 在这些系统中,对元素之间相互作用的控制对于完全利用自旋波性能至关重要。 在本文中,我研究了可以在宏伟系统中找到应用的铁磁多层。 我通过引入磁性开始论文。 接下来是对微磁性的解释,控制磁系统的相互作用,磁化纹理和自旋波,以当前深入研究的宏伟晶体和自旋波计算的主题结论。如今,大多数计算单元基于电子设备。然而,由于使用高功率密度和高电压相关的局限性,可能很快就不可能对综合电路进行进一步的小型化。旋转波的最大优势是它们的非常低的能量,加上微波频率中数百甚至数十纳米的波长,可以设计出比电子设备设计具有明显低于电子设备的纳米级设备的可能性。在过去的二十年中,科学家特别强调了基本宏伟设备的设计,例如定向耦合器,二极管,晶体管或逻辑门,这些设备可以在宏伟的集成电路中找到应用。在这些系统中,对元素之间相互作用的控制对于完全利用自旋波性能至关重要。在本文中,我研究了可以在宏伟系统中找到应用的铁磁多层。我通过引入磁性开始论文。接下来是对微磁性的解释,控制磁系统的相互作用,磁化纹理和自旋波,以当前深入研究的宏伟晶体和自旋波计算的主题结论。然后,我解释了论文中使用的数值方法,并详细介绍了问题的实现。在研究的第一部分中,我展示了如何使用非重点相互作用来设计非相互设备。dzyaloshinskii – moriya的相互作用用于诱导分散关系的不对称性,该分散关系进一步用于设计自旋波二极管和循环器。在第二项研究中,使用偶极相互作用引起的达蒙 - 什场模式的表面特征用于设计一个四端口的设备,该设备可以具有不同的功能(循环器,方向耦合器或反射器),用于不同的激发频率。下一项研究显示了与垂直磁各向异性的dzyaloshinskii – moriya相互作用如何导致忽略1 nm的层之间的相互作用,这可以进一步用于设计密集包装的非交织的不相互作用的波导的系统。在第三部分中,我将专注于使用层之间的相互作用,将材料与磁化纹理和具有良好自旋波传播特性的材料搭配起来,以形成宏伟的晶体。第一个系统是具有弱垂直磁各向异性的层,其中诱导条纹结构域,并与薄或绒布层相互作用。由于
研究太阳物理学中其他行星磁层和大气层的案例 Ian J. Cohen 1 , Chris Arridge 2 , Abigail Azari 3 , Chris Bard 4 , George Clark 1 , Frank Crary 5 , Shannon Curry 3 , Peter Delamere 23 , Ryan M. Dewey 22 , Gina A. DiBraccio 4 , Chuanfei Dong 19 , Alexander Drozdov 6 , Austin Egert 21 , Rachael Filwett 7 , Jasper Halekas 7 , Alexa Halford 4 , Andréa Hughes 4,8 , Katherine Garcia-Sage 4 , Matina Gkioulidou 1 , Charlotte Goetz 9 , Cesare Grava 10 , Michael Hirsch 14 , Hans Leo F. Huybrighs 11 , Peter Kollmann 1 , Laurent Lamy 12,13 , Wen Li 14 , Michael Liemohn 22 , Robert Marshall 5 , Adam Masters 20 , RT James McAteer 15 , Karan Molaverdikhani 16 , Agnit Mukhopadhyay 22 , Romina Nikoukar 1 , Larry Paxton 1 , Leonardo H. Regoli 1 , Elias Roussos 17 , Nick Schneider 5 , Ali Sulaiman 18 , Y.Sun 24 , Jamey Szalay 19
1 Tuorla天文台,物理与天文学系,20014年,芬兰图尔库大学,芬兰电子邮件: Kepler Astro与粒子物理中心,Tübingen大学,SAND 1,72076Tübingen,德国4天文学系,Kazan(Volga Region)(沃尔加地区)联邦大学,Kremlyovskaya Str。18,420008俄罗斯喀山5俄罗斯科学院太空研究所,Profsoyuznaya str。 84 /32,俄罗斯莫斯科6物理系和哥伦比亚天体物理学实验室,哥伦比亚大学,纽约州纽约州纽约市西120街538号,美国7号哥伦比亚大学,美国7号,美国7号纽约州纽约州纽约市中心,Flatiron Institute,Flatiron Institute,162 Fifth Avenue,New York Avenue,NE NY 10010,USA < / div>,USA < / div>18,420008俄罗斯喀山5俄罗斯科学院太空研究所,Profsoyuznaya str。84 /32,俄罗斯莫斯科6物理系和哥伦比亚天体物理学实验室,哥伦比亚大学,纽约州纽约州纽约市西120街538号,美国7号哥伦比亚大学,美国7号,美国7号纽约州纽约州纽约市中心,Flatiron Institute,Flatiron Institute,162 Fifth Avenue,New York Avenue,NE NY 10010,USA < / div>,USA < / div>84 /32,俄罗斯莫斯科6物理系和哥伦比亚天体物理学实验室,哥伦比亚大学,纽约州纽约州纽约市西120街538号,美国7号哥伦比亚大学,美国7号,美国7号纽约州纽约州纽约市中心,Flatiron Institute,Flatiron Institute,162 Fifth Avenue,New York Avenue,NE NY 10010,USA < / div>,USA < / div>