磁性材料已知数千年。,由于它们在电动机,传感器和计算机等设备中的广泛使用以及常规的冰箱磁铁,它们在当今世界中起着重要作用。对在铁磁材料中的应用(即自旋波)中的应用非常希望。如今,大多数计算单元基于电子设备。 然而,由于使用高功率密度和高电压相关的局限性,可能很快就不可能对综合电路进行进一步的小型化。 旋转波的最大优势是它们的非常低的能量,加上微波频率中数百甚至数十纳米的波长,可以设计出比电子设备设计具有明显低于电子设备的纳米级设备的可能性。 在过去的二十年中,科学家特别强调了基本宏伟设备的设计,例如定向耦合器,二极管,晶体管或逻辑门,这些设备可以在宏伟的集成电路中找到应用。 在这些系统中,对元素之间相互作用的控制对于完全利用自旋波性能至关重要。 在本文中,我研究了可以在宏伟系统中找到应用的铁磁多层。 我通过引入磁性开始论文。 接下来是对微磁性的解释,控制磁系统的相互作用,磁化纹理和自旋波,以当前深入研究的宏伟晶体和自旋波计算的主题结论。如今,大多数计算单元基于电子设备。然而,由于使用高功率密度和高电压相关的局限性,可能很快就不可能对综合电路进行进一步的小型化。旋转波的最大优势是它们的非常低的能量,加上微波频率中数百甚至数十纳米的波长,可以设计出比电子设备设计具有明显低于电子设备的纳米级设备的可能性。在过去的二十年中,科学家特别强调了基本宏伟设备的设计,例如定向耦合器,二极管,晶体管或逻辑门,这些设备可以在宏伟的集成电路中找到应用。在这些系统中,对元素之间相互作用的控制对于完全利用自旋波性能至关重要。在本文中,我研究了可以在宏伟系统中找到应用的铁磁多层。我通过引入磁性开始论文。接下来是对微磁性的解释,控制磁系统的相互作用,磁化纹理和自旋波,以当前深入研究的宏伟晶体和自旋波计算的主题结论。然后,我解释了论文中使用的数值方法,并详细介绍了问题的实现。在研究的第一部分中,我展示了如何使用非重点相互作用来设计非相互设备。dzyaloshinskii – moriya的相互作用用于诱导分散关系的不对称性,该分散关系进一步用于设计自旋波二极管和循环器。在第二项研究中,使用偶极相互作用引起的达蒙 - 什场模式的表面特征用于设计一个四端口的设备,该设备可以具有不同的功能(循环器,方向耦合器或反射器),用于不同的激发频率。下一项研究显示了与垂直磁各向异性的dzyaloshinskii – moriya相互作用如何导致忽略1 nm的层之间的相互作用,这可以进一步用于设计密集包装的非交织的不相互作用的波导的系统。在第三部分中,我将专注于使用层之间的相互作用,将材料与磁化纹理和具有良好自旋波传播特性的材料搭配起来,以形成宏伟的晶体。第一个系统是具有弱垂直磁各向异性的层,其中诱导条纹结构域,并与薄或绒布层相互作用。由于
主要关键词