摘要作为现代社会中通信,信息和感知的无线解决方案,电磁波(EMW)为人们日常生活质量的提高做出了巨大贡献。同时,EMWS产生电磁污染,电磁干扰(EMI)和射频(RF)信号泄漏的问题。这些情况导致对有效的EMI屏蔽材料的需求很高。要设计EMI屏蔽产品,必须在电磁屏蔽效率,屏蔽材料的厚度,耐用性,机械强度,体积和重量减小以及弹性之间实现折衷。由于其阻断EMW,柔韧性,轻质和化学电阻率的效果,石墨烯已被确定为有效的候选材料,以进行有效的EMI屏蔽。在此,我们审查了研究各种基于石墨烯的复合材料作为潜在的EMI屏蔽材料的研究,重点是基于石墨烯和银纳米线的复合材料,原因是它们的高EMI屏蔽效率,低产量和有利的机械性能。
Abbreviations ADC: Antibody-drug conjugate ADCP: Antibody-dependent cell phagocytosis ADCC: Antibody-dependent cellular cytotoxicity AI: Aromatase inhibitor AKT: Protein kinase B ASCO-CAP: American Society of Clinical Oncology/College of American Pathologists CAR-T cells: Chimeric antigen receptor T cells cTNM: Clinical肿瘤淋巴结 - 纳斯症CDK:依赖细胞周期蛋白的激酶CCL5:趋化因子(C-C基序)配体5 CHI3L1:几丁质酶-3样蛋白1 CHRM1:毒蕈碱乙酰胆碱受体受体M1 DCIS M1 DCIS M1 DCIS M1 DCIS M1 DCIS:DDPCR:DDDPCR:DDDPCR:ddplet DIDIDER DIMDASE CRASSENT CONSE RIDENCASE COSSERVER DILDATE CRASSISS COMENCASS COMASE DRFFS: Early Breast Cancer Trialists' Collaborative Group EC: Epirubicin and cyclophosphamide EGFR: Epidermal growth factor receptor ER: Estrogen receptor ERBB2: Human epidermal growth factor receptor 2 (HER2) ERK: Extracellular signal-regulated kinase FDR: False discovery rate FZD: Frizzled receptors GNRH: Gonadotropin-releasing hormone GPCR: G蛋白偶联受体GPRC5D:G蛋白偶联受体C类C组5成员D HER1:人表皮生长因子受体1(EGFR)HER2:人类表皮生长因子受体2
通过定向冰模板法制备了基于具有各向异性结构的纤维素纳米晶体 (CNC) 和多壁碳纳米管 (MWCNT) 的轻质且机械强度高的混合泡沫。各向异性混合 CNC-MWCNT 泡沫表现出高度各向异性的热导率和方向相关的电磁干扰 (EMI) 屏蔽性,对于含有 22 wt% MWCNT 的混合泡沫,在 8 到 12 GHz 之间最大的 EMI 屏蔽效率 (EMI-SE) 为 41–48 dB。EMI-SE 主要由吸收 (SE A ) 决定,这对于微波吸收器应用非常重要。低径向热导率的建模强调了声子散射在异质 CNC-MWCNT 界面处的重要性,而轴向热导率主要由沿取向的棒状颗粒的固体传导决定。轻质 CNC-MWCNT 泡沫结合了各向异性热导率和 EMI 屏蔽效率,这种特性十分独特,可用于定向热传输和 EMI 屏蔽。
已审查了不同电磁屏蔽材料的设计和制造方法的最新技术。由于电信技术开发产生的电磁污染,该主题已成为主流研究领域。审查以吸收性材料为中心,并显示了如何通过几何,组成,形态和填充粒子含量来定制此类复合材料的吸收特性的一般概述。尽管解释了不同类型的材料,但文本主要集中在石墨烯和碳纳米管等碳材料上。通过这种方式,讨论了导电填充剂在不同聚合物矩阵中的重要性。此外,还提出了一项关于新的复杂体系结构(例如基于泡沫的材料)的广泛研究。最后,提到了碳填充剂与其他成分(例如金属纳米颗粒)的组合。在所有这些研究中,讨论了复合材料作为吸收性或反射电磁辐射的效率。
摘要最近,COVID-19大流行对世界各地的个人和社会产生了极大的影响。这项研究旨在描述瑞典中学(10-12岁)学生对细菌和病毒的理解,从而说明了大流行在学校和社会中的影响。数据是通过半结构化的各个视图和要求学生绘制图像的。使用了访谈成绩单的主题编码和学生注释图纸的内容分析。图纸上微生物的形态通常是“电晕”的,具有圆形和突出的部分。病毒被认为比细菌大,但有时也相似。细菌和病毒之间的相互关系用上等微生物表达。学生将微生物像细胞一样,从不将它们描绘成动物或具有拟人化特征。病毒被认为比细菌引起更严重的疾病。学生很少将特定病毒束缚在特定的传染病上,并经常将(病毒和疾病)称为“电晕”。然而,当它们确实建立连接时,病毒被认为会引起流感和covid-19,细菌会引起感冒和鼠疫。通常,这些结果表明,病毒在COVID-19的后果中在小学生的脑海中获得了微型iSM的更为明显的位置。
近年来,木质复合材料凭借其可持续性及固有的层状多孔结构,在电磁干扰(EMI)屏蔽领域受到了广泛关注。木材的通道结构常用于负载高导电材料以提高木质复合材料的EMI屏蔽性能,但如何利用纯木材制备超薄EMI屏蔽材料的研究很少。本文首先通过平行于年轮切割木材得到超薄单板,然后通过简单的两步压制和碳化制备碳化木膜(CWF)。超薄厚度(140 μ m)、高电导率(58 S cm − 1 )的CWF-1200的比EMI屏蔽效能(SSE/t)可达9861.41 dB cm 2 g − 1,远高于已报道的其他木质材料。此外,在CWF表面原位生长沸石咪唑酯骨架-8(ZIF-8)纳米晶体,得到CWF/ZIF-8。CWF/ZIF-8表现出高达46 dB的EMI屏蔽效能(SE),在X波段表现出11 330.04 dB cm 2 g − 1的超高SSE/t值。此外,超薄CWF还表现出优异的焦耳加热效应。因此,超薄木基薄膜的开发为木质生物质取代传统的不可再生且昂贵的电磁(EM)屏蔽材料提供了研究基础。
EMI 屏蔽效能 (EMI SE) 定义为入射功率 (PI) 与发射功率 (PT) 的对数比,单位为分贝 [S1],用于评估材料屏蔽电磁波的性能。一般而言,EMI SE(单位为 dB)越高,电磁波穿过屏蔽层的效果越差。EMI SE 实验上由散射参数 S 11 和 S 21 得出,这两个参数由矢量网络分析仪 (N5234B, KEYSIGHT) 在 8.2 – 12.4 GHz 频率范围内测得,它们的关系如下 [S2, S3] 所示:
完整作者列表: Park, Janghoon;马萨诸塞大学阿默斯特分校,聚合物科学与工程 Hu, Xiyu;马萨诸塞大学阿默斯特分校,聚合物科学与工程 Torfeh, Mahsa;马萨诸塞大学阿默斯特分校,电气与计算机工程 Okoroanyanwu, Uzodinma;马萨诸塞大学阿默斯特分校,聚合物科学与工程 Arbabi, Amir;马萨诸塞大学阿默斯特分校,电气与计算机工程 Watkins, James J.;马萨诸塞大学阿默斯特分校,聚合物科学与工程
国家 / 制造商 美国 / IMS-AMCO 美国 / Equipto 美国 / EMPrimus 韩国 / ETRI 研究所
4.1.2.5.3 当无法拆除屏蔽外壳壁 SÚ1¿ 和 SÚ2¿ 时,应将两个杆 RÚ1¿ 和 RÚ2¿ 放置在外壳外部完全相同的位置,不得有任何障碍物。由于 RÚ1¿ 产生的强电场可以穿透探测器 D 和衰减器 A 的金属外壳,因此两个设备应留在外壳内,杆 RÚ2¿ 通过传输线连接器引出外壳。所用电缆应尽可能短。连接器应在穿过屏蔽外壳每个壁的地方沿圆周接地。测试期间,屏蔽外壳门应关闭。