操纵磁各向异性的能力对于磁传感和存储工具至关重要。表面碳物种是金属氧化物和高贵金属上限层的成本效益替代品,从而在超薄铁磁性磁性纤维中诱导垂直磁各向异性。在这里,在碳一氧化碳(CO),分散的碳和石墨烯的吸附后修饰了几层厚的CO薄膜中的磁性的不同机制。使用化学和磁灵敏度使用X射线显微镜,在表面碳的积累期间,监测了面向面向非平面自旋的重新定向转变,直至形成石墨烯。互补的磁光测量结果显示,在CO上分散的碳在室温下显示出弱垂直磁各向异性(PMA),而石墨烯覆盖的钴表现出显着的平面外胁迫型。密度功能理论(DFT)计算表明,从CO/CO到C/CO再到石墨烯/CO,磁晶和磁静脉各向异性的组合促进了平面外磁化。各向异性能量弱依赖于碳化物物种覆盖率。相反,碳化学状态从碳化物到石墨的演变伴随着由磁各向异性能量控制的特征域大小的指数增加。除了对碳 - 铁磁铁界面提供基本了解之外,本研究还提出了一种可持续的方法,可在超薄铁磁性磁铁中调整磁各向异性。
PHY582(春季)请参阅 https://webapp4.asu.edu/catalog/ 网站了解讲座时间和地点 固体量子理论涵盖了从半导体器件的操作到磁阻、铁磁性的起源和超导性的所有内容。目的是解释物质的所有物理性质,尤其是超导性等奇异性质。本课程的第一学期强调了电子结构及其计算方法,以石墨烯为例,以及各种近似值。(紧束缚等)。第二学期讨论命名效应、器件、声子(时间允许)。可以从第二学期开始。每 2 周布置一次作业 - 很有挑战性!文本、教学大纲(粗体部分为最佳)PHY581/2 的书籍。主要教科书是 Ketterson, J.B.“固体物理学”。2016 年底出现了优秀的新文本。适合本课程的级别。精彩、权威、大而全面,有很多方程式。M. Cohen 和 S. Louie。“凝聚态物理学基础”。CUP。同样好。Ibach 和 Luth 的“固体物理学”。(Springer,平装本)。这是理论和实验的完美结合,内容新颖,价格不贵(可在 ASU 书店购买)或者在网上购买这三本书中的任何一本,例如二手书。如果您觉得需要入门背景知识,可以购买 Omar 所著的二手书(见下文)。D. Griffiths 撰写的量子力学文本也提供了很好的背景知识。可选的附加文本。
商船通函编号138 致:船舶所有人、船舶修理工、船长、值班人员、罗盘制造商和罗盘调整员。主题:磁罗盘 参考:法令编号7、SOLAS 74 修正案、IMO 决议 A.382(X)、决议 A.694(17)、决议 A.813(19) 和决议 MSC.86(70)、法令编号 45。本商船通函旨在制定维护和测试磁罗盘的指南。1.适用范围。1.这些指南适用于所有船舶,无论其大小和航行区域如何。2.要求。1.1974 年《国际海上人命安全公约》(SOLAS)2000 年修正案第 V 章第 19 条要求配备磁罗盘。磁罗盘必须符合本组织制定的标准。3.维护责任。1.船东/经营者和船长有责任确保其船上的罗盘按照本组织制定的标准保持良好的工作状态。4.何时调整罗盘。1.下列情况下应调整磁罗盘:a) 首次安装或更换 b) 变得不可靠,c) 船舶进行可能影响其永久磁性和感应磁性的结构维修或改造,d) 添加、移除或改造靠近罗盘的电磁设备,e) 自上次调整之日起已过去最多一 (1) 年,且罗盘偏差记录未得到妥善保存或偏差记录过多或罗盘出现物理缺陷,f) 考虑到地点和使用方法的变化,偏差超过五 (5) 度。
IRT1:氧化物 - 氧化物界面研究人员:Ravi(负责人)、Williams、Wang、Kourkoutis、Schlom 为了创建能够在室温下电控制磁性的界面材料,我们将共同理论化、合成和表征两种有前景的磁电系统。这两个系统都涉及含铁氧化物之间的界面,因为所有已知的室温(或更高温度)磁电体或磁电多铁性材料都是含铁的氧化物。 IRT 2:氧化物-金属有机框架界面研究人员:Li(负责人)、Ingram、Kourkoutis、Muller、Tandabany、Salman 将二维层状材料精确组装成复杂的异质结构在材料化学中具有科学兴趣和技术意义。范德华异质结构体现了这一概念,并人工横向或垂直堆叠两种原子薄的层状材料,为设计混合界面和功能设备铺平了新途径。这两种二维材料之间的有机-无机界面可能会产生不寻常的磁性。 IRT 3:氧化物 - 聚合物界面研究人员:Khan(负责人)、Williams、Wang、Schlom、Kourkoutis、Muller 聚合物和结晶固体之间的界面在一系列技术应用中发挥着重要作用。在 IRT-3 中,我们将研究具有独特导电性能的聚合物复合材料,这些复合材料通过模板化组装导电铁电聚合物制成,这些聚合物来自无机铁电氧化物提供的有序极化 15 图案。出版物
对我们宇宙中观察到的重子不对称的解释是物理的未解决问题之一。由于缺乏CP伤害的来源,无法使用已建立的标准曼德尔解决此问题。因此,需要更一般的模型嵌入标准模型。使用3 He/ 129 XE comagnetomer,可以测量129 Xe原子的永久性电偶极矩(EDM),这可以为其他CP损伤提供实验可访问的信号。为了能够进行此类测量,需要在PT/cm区域内具有磁场梯度的均匀磁场。因此,在2021年,在海德堡的物理研究所建造了一个磁性的房间(MSR)。作为这项工作的一部分,这项新的MSR被表征,并进行了一种新型的反磁化常规和测试,从而导致中心的(1.2±0.2)NT的测量残留磁场。此外,将现有的结构产生了超偏(HP)129 XE并进行了优化。从HP XENON的NMR信号确定的校准表明,在流动模式下的绝对极化为(37±3)%,累积后(18.8±0.5)的绝对极化,这可以实现。HP Xenon气体已成功转移到MSR,进行了第一个系统测试。可以实现T ∗ 2 =(4137±17)s的连贯的隐私周期的存储时间=(8521±254)s。这些特性可以精确测量MSR内的磁场梯度,其精度低于Pt/cm。因此,这项工作为将来的129 XE-EDM测量提供了重要的基础。
扭曲的二维(2D)Van der Waals(VDW)量子材料以其非同规性的超导性,金属绝缘体过渡(MOTT TRUSTITION),旋转液相等而闻名,为强电子相关提供丰富的景观。这种电子相关性也解释了扭曲晶体中的异常磁性。然而,由于缺乏理想的材料以及设计Moiré磁铁与它们的新兴磁性和电子特性相关的适当方法,因此限制了2D扭曲磁力领域的进步。在这里,我们设计了VDWMoiré磁铁,并证明了旋转两个单层的简单动作,即以各种扭曲角度旋转1T-NBSE 2和1T-VSE 2,产生了增强和淬灭的局部磁性磁矩的无均匀混合物,每个过渡金属杂种(V)和niobium(V)和Niobium(V)和NB)(NB)Antome。准确地说,扭曲角会影响每个组成层的局部磁矩。在VDWMoiréSuprattice中出现了引人注目的频带和巡回的铁磁性,后者令人满意的Stoner标准。这些特征是由原子晶格位点的轨道复杂化而不是层之间的层间耦合引起的。此外,在未介绍的杂波系统中鉴定出轨道磁性。结果提出了一种有效的策略,该策略是针对扭曲调节的现场磁性的新量子力学现象的洞察力。
总的来说,本文通过将硬性约束物理学知情的神经网络技术整合到能量最小化框架中,从而对计算微磁性做出了贡献。但是,开发的方法在磁静态方面具有进一步的适用性,用于其他物理和工程领域。短传记:塞巴斯蒂安·亚历山大·沙弗(Sebastian Alexander Schaffer)(生于1992年)是奥地利计算科学家。在Zeltweg完成高中后,他获得了Tu Wien的工程工程学士学位。他对计算机科学和数学数学的兴趣日益增长,使他攻读大学的计算科学硕士学位。wien。在他的主人论文中,由L. Exl和N. J. Mauser监督,他探索了用于预测磁化动态的机器学习方法,并产生了2个出版物。他继续担任计算科学领域的博士生,重点是微型磁性中的机器学习,而全职员工在WPI的一半,在Univ的研究平台上进行了一半。Wien,他在数学建模和应用机器学习中教书。致谢:本文的研究是由FWF(奥地利科学基金会)通过“减少微型磁性的订单方法(ROAM)的订单方法”(Grant-Doi:10.55776/p31140),“ data-roam”(Grant-doi:10.55776/pat76615923)和“ Denamm Insport” (Grant-Doi:10.55776/p35413)。感谢研究平台MMM和Wolfgang Pauli Institute(WPI)的进一步财务和行政支持。
16在当代时代,新颖的制造技术(如添加剂制造(AM)17)彻底改变了不同的工程领域,包括生物医学,航空航天,18个电子产品等。四维(4D)智能材料的印刷(4D)在科学界中广受欢迎,该社区具有出色的能力,可以制作20种软机器人,执行器和握手等柔软结构。这些软结构是通过将21种各种刺激(例如pH,温度,磁场和许多组合)应用于软22材料而开发的。3D打印中的刺激允许各种形状变形行为,例如弯曲,23扭曲,折叠,肿胀,滚动,滚动,收缩,折纸或运动。可以通过将软磁性或硬磁性25颗粒掺入软材料中,从而产生磁性柔软的材料(MASM)来制造各种各样的软24磁性结构。通过这26个集成,磁性热耦合致动允许多样化的磁性变形,27促进了能够增强28变形的个性化设备的开发。在这篇综述中,在3D打印上提供了针对29种磁性活性聚合物(地图),磁性活性复合材料以及磁性的水凝胶30(MAHS)的指南,以促进各种智能和灵活的设备的繁荣开发,例如软机器人,例如31可耐磨机器,可耐磨的电子设备和生物材料。3D打印的软机器人技术具有32个出色的能力,可适应许多高级促使33个应用程序的复杂情况。最后,提出了这项令人兴奋的技术34的当前挑战和新兴领域。最后,预计开发35种智能和智能磁性结构的技术进步将对36个现实世界应用的设计产生重大影响。
无机化合物。CO3:了解核化学的重要性,其相关反应及其应用。化学键合价键理论,杂交理论,VSEPR理论,分子轨道理论,轨道的波浪机械描述,MOS在HOMO和异核性核分子中的应用,分子轨道的对称性,分子轨道的对称性,金属中键合的理论。酸碱概念介绍 - 布朗斯特 - 低点定义,溶剂系统定义,勒克斯 - 河 - 液体定义,刘易斯定义,硬酸和碱基概念(HSAB),硬,边框线以及软酸和基础的分类。Main Group Chemistry-General discussion on the properties of main group elements, boron cage compounds, structure and bonding in polyhedral boranes, carboranes and metalloboranes, styx notation, Wade's rule, electron count, synthesis of polyhedral boranes and carboranes, silicones, silicates, boron nitride, borazines and phosphazenes, hydrides,硝基元(N,P),墨西哥蛋白酶(S,SE&TE)的氧化物和氧气,卤素,Xenon化合物,假卤素和外Halagen化合物,碳的同种异体,合成和反应性的硅和磷的无机聚合物的合成和反应性。还原电势延迟和霜图。内部过渡金属 - 对灯笼和肌动剂的介绍,灯笼/肌动剂的位置,包括电子结构和氧化态,兰烷基和actinide收缩,肌动蛋白假设,光谱,兰特烷基的光谱和磁性的物理特性,灯笼乙酰胺复合物的应用,transactacticinide Elements。参考:核化学引入,放射性和测量,放射性序列,半衰期,核衰减,伯特的核过程符号,核反应的类型,核裂变。
b'Abstract:在石墨烯纳米结构中掺入非苯并丁基基序会显着影响其特性,从而使其对碳基电子中的应用有吸引力。然而,了解特定的非苯基结构如何影响其性质仍然有限,并且需要进一步的研究以充分理解其含义。在这里,我们报告了一种地面合成策略,用于制造非偶氮纳米仪,其中包含五角形和七型甲环的不同组合。通过扫描隧道显微镜和光谱检查研究了它们的结构和电子特性,并补充了计算研究。在AU(111)表面的前体P的热激活后,我们检测到了两种主要的纳米摄影产物。纳米谱烯A A A A嵌入了通过甲基取代基氧化环闭合形成的两个叠氮烯单元,而A A S包含一个叠氮单元和一个石 - 孔缺陷,由氧化环盘纤维和骨骼环形反应组合形成。a a A表现出抗铁磁基态,其磁性交换耦合最高的含量最高的含量含量为纳米谱,并与副产品并存,副产品具有封闭的壳构型,这是由环封元型和环型重新计算反应组合的(b a a a,b a s s s s,b a,b a s,b a,b a s s,b a s s,b s-a和b s s)。我们的结果提供了对包含非苯甲酸基序及其量身定制的电子/磁性的新型NG的单个金原子辅助合成的见解。