此详细案例报告探讨了氯胺酮辅助心理治疗(KAP)在30年代后期的男性患者治疗焦虑症(GAD)(GAD)和抑郁症状中的应用。N-甲基-D-天冬氨酸(NMDA)受体拮抗剂氯胺酮由于其快速且稳健的抗抑郁作用而在情绪和焦虑症的治疗中取得了显着突破。临床前研究表明,氯胺酮促进了大脑的生物学改变,包括增强神经可塑性。然而,迄今为止,还没有使用磁脑摄影(MEG)(一种强大的功能性神经影像学方式)检查了KAP的纵向效应。静止状态MEG(RSMEG)扫描允许探索与KAP相关的情绪和焦虑症状变化的神经相关性,包括参与认知和情绪调节的大脑网络之间的功能连通性。在本案例研究中,一个中等重度GAD的成年男性参与者在基线时进行了两次RSMEG扫描和认知测试,在6个标准氯胺酮给药和2个整合会议中的6次会议中有4个,其中一部分是一项协议的一部分,该协议总共包括6次KAP会话和四次集成。我们在5个功能网络中测量了功能连接性 - 默认模式,注意力,中央执行,运动和视觉以及神经振荡活动。我们看到5个网络中的4个中的功能连接增加。这与皮质β活性的显着增加相吻合,抑制作用的标志,theta振荡的降低,GAD7和PHQ9分数的降低以及提高了注意力。总而言之,这些发现强调了RSMEG检测KAP诱导的大脑网络变化的能力,提供了一种有希望的工具,用于识别临床相关的神经相关性,可以通过电生理学变化来预测和监测治疗结果。
摘要和证据分析:根据美国神经病学学会(MEG)(MEG)(2009)磁脑电图(MEG),也称为磁源成像(MSI)是对脑活动产生的磁场的无创测量。典型的MEG记录是使用具有100到300磁力计或梯度计(传感器)的设备在磁性屏蔽室内进行的。它们被排列在一个名为Dewar的头盔形式的容器中。露水充满了产生超导性的液态氦气。产生磁场图的大脑源可以很容易地映射并显示在核监管MRI上。这会导致视觉显示正常的大脑活动,例如雄辩的皮层用于视觉,触摸,运动或语言的位置。它显示出同样良好的脑活动异常,例如癫痫病
基于对动植物进行的数百种实验研究,生物多样性与生态系统功能之间存在良好的关系[1,2]。,这种关系对于微生物而言是复杂而难以捉摸的,鉴于物种数量的惊人以及我们对它们表达的功能性状的有限理解。识别新的微生物物种并获得对其生态作用的见解的挑战是令人兴奋和令人不安的。一方面,它使我们能够获得有关微生物多样性及其为我们星球提供的服务的真实程度的宝贵信息。另一方面,鉴于地球自然生态体的环境退化的状态以及气候变化引起的变化,它要求我们相当快地移动。这是热带地区特别关注的,因为它与任何其他生态系统的植物物种数量不高,并且估计估计> 40 000棵树特征的估计数量到2050年被威胁到全球范围内[4]。随着植物的消失,有
1 1高级材料的地面工程中心和电弧培训中心,Swinburne技术学院,Swinburne技术学院,霍斯纳恩大学,VIC 3122,VIC 3122,澳大利亚2墨尔本纳米制造中心,惠灵顿路151号,惠灵顿路151号,澳大利亚3168,VIC 3168,澳大利亚312 Yealth 3 312澳大利亚4个光子学研究所和纳米技术学院,物理学院,维尔纽斯大学,索尔伊蒂基奥。 3,LT-10257 Vilnius,立陶宛5心理学科学学院,La Trobe University,墨尔本,VIC 3086,澳大利亚6 WRH计划国际研究边界计划(IRFI),东京技术研究所,Nagatsuta-Cho,Midori-Ku,Midori-Ku,Yokohama 226-8503503503,KANAGA,KANAGAA,KANAGAA,KANAGAA,KANAGAA,KANAGAA,KANAGAA, weerasuriya@gmail.com(c.w. ); suonhockng@swin.edu.au(S.H.N. ); sjuodkazis@swin.edu.au(S.J.)1高级材料的地面工程中心和电弧培训中心,Swinburne技术学院,Swinburne技术学院,霍斯纳恩大学,VIC 3122,VIC 3122,澳大利亚2墨尔本纳米制造中心,惠灵顿路151号,惠灵顿路151号,澳大利亚3168,VIC 3168,澳大利亚312 Yealth 3 312澳大利亚4个光子学研究所和纳米技术学院,物理学院,维尔纽斯大学,索尔伊蒂基奥。3,LT-10257 Vilnius,立陶宛5心理学科学学院,La Trobe University,墨尔本,VIC 3086,澳大利亚6 WRH计划国际研究边界计划(IRFI),东京技术研究所,Nagatsuta-Cho,Midori-Ku,Midori-Ku,Yokohama 226-8503503503,KANAGA,KANAGAA,KANAGAA,KANAGAA,KANAGAA,KANAGAA,KANAGAA, weerasuriya@gmail.com(c.w.); suonhockng@swin.edu.au(S.H.N.); sjuodkazis@swin.edu.au(S.J.)
鸣谢作者贡献声明 Takfarinas Medani:方法论、软件、验证、形式分析、调查、数据管理、写作 - 原始草稿、写作 - 评审和编辑、可视化。 Juan Garcia-Prieto:方法论、软件、验证、形式分析、调查、数据管理、写作 - 原始草稿、写作 - 评审和编辑、可视化。 Francois Tadel:方法论、软件、验证、写作 - 原始草稿、写作 - 评审和编辑、可视化。 Marios Antonakakis:形式分析、验证、写作 - 评审和编辑。 Tim Erdbrüg-ger:软件、形式分析、写作 - 评审和编辑。 Malte Höltershinken:软件、形式分析、写作 - 评审和编辑。 Wayne Mead:调查、数据管理、写作 - 评审和编辑。 Sophie Schrader:软件、形式分析、资源、写作 - 评审和编辑。 Anand Joshi:软件、形式分析、资源、写作 - 评审和编辑。 Christian Engwer:软件、资源、写作 - 审阅和编辑、监督。Carsten H. Wolters:概念化、方法论、软件、验证、调查、资源、数据管理、写作 - 原始草稿、写作 - 审阅和编辑、可视化、监督、资金获取。John C. Mosher:概念化、方法论、软件、验证、调查、资源、写作 - 原始草稿、写作 - 审阅和编辑、可视化、监督、项目管理、资金获取。Richard M. Leahy:概念化、方法论、验证、调查、资源、写作 - 原始草稿、写作 - 审阅和编辑、可视化、监督、项目管理、资金获取。
1 Mar Ephraem工程技术学院CSE系,Marthandam 629171,印度泰米尔纳德邦; leninfred@marephraem.edu.in(a.l.f. ); fredin.givo@yahoo.in(F.A.S.G。) 2 Amal Jyothi工程学院EEE系,坎吉拉帕利686518,印度喀拉拉邦; appu123kumar@gmail.com 3 MAR ECE,MAR EPHRAEM工程技术学院,Marthandam 629171,印度泰米尔纳德邦; ajay@marephraem.edu.in.在印度泰米尔纳德邦Vellore 632014的Vellore Technology Institute of Vellore Institute of Beginative Biology系; sayantan7@gmail.com 5新加坡新加坡Nanyang Technological University的认知神经影像中心,新加坡; pbharishita@gmail.com(H.P.B. ); simw0035@e.ntu.edu.sg(W.K.J.S. ); vimalan.vijay@ntu.edu.sg(V.V. ); veikko.jousmaki@aalto 6 Nanyang Technological University,新加坡636921,新加坡7 Aalto神经影像学,神经科学与生物医学工程系,AALTO大学,12200 ESPOO,芬兰8号ESPOO,KAROLINSKA研究所,Karolinska Instutter,17176 Stockholm,Sweenneconcection: ppadmanabhan@ntu.edu.sg(P.P. ); balazs.gulyas@ntu.edu.sg(B.G.)1 Mar Ephraem工程技术学院CSE系,Marthandam 629171,印度泰米尔纳德邦; leninfred@marephraem.edu.in(a.l.f.); fredin.givo@yahoo.in(F.A.S.G。)2 Amal Jyothi工程学院EEE系,坎吉拉帕利686518,印度喀拉拉邦; appu123kumar@gmail.com 3 MAR ECE,MAR EPHRAEM工程技术学院,Marthandam 629171,印度泰米尔纳德邦; ajay@marephraem.edu.in.在印度泰米尔纳德邦Vellore 632014的Vellore Technology Institute of Vellore Institute of Beginative Biology系; sayantan7@gmail.com 5新加坡新加坡Nanyang Technological University的认知神经影像中心,新加坡; pbharishita@gmail.com(H.P.B. ); simw0035@e.ntu.edu.sg(W.K.J.S. ); vimalan.vijay@ntu.edu.sg(V.V. ); veikko.jousmaki@aalto 6 Nanyang Technological University,新加坡636921,新加坡7 Aalto神经影像学,神经科学与生物医学工程系,AALTO大学,12200 ESPOO,芬兰8号ESPOO,KAROLINSKA研究所,Karolinska Instutter,17176 Stockholm,Sweenneconcection: ppadmanabhan@ntu.edu.sg(P.P. ); balazs.gulyas@ntu.edu.sg(B.G.)2 Amal Jyothi工程学院EEE系,坎吉拉帕利686518,印度喀拉拉邦; appu123kumar@gmail.com 3 MAR ECE,MAR EPHRAEM工程技术学院,Marthandam 629171,印度泰米尔纳德邦; ajay@marephraem.edu.in.在印度泰米尔纳德邦Vellore 632014的Vellore Technology Institute of Vellore Institute of Beginative Biology系; sayantan7@gmail.com 5新加坡新加坡Nanyang Technological University的认知神经影像中心,新加坡; pbharishita@gmail.com(H.P.B.); simw0035@e.ntu.edu.sg(W.K.J.S.); vimalan.vijay@ntu.edu.sg(V.V.); veikko.jousmaki@aalto6 Nanyang Technological University,新加坡636921,新加坡7 Aalto神经影像学,神经科学与生物医学工程系,AALTO大学,12200 ESPOO,芬兰8号ESPOO,KAROLINSKA研究所,Karolinska Instutter,17176 Stockholm,Sweenneconcection: ppadmanabhan@ntu.edu.sg(P.P. ); balazs.gulyas@ntu.edu.sg(B.G.)6 Nanyang Technological University,新加坡636921,新加坡7 Aalto神经影像学,神经科学与生物医学工程系,AALTO大学,12200 ESPOO,芬兰8号ESPOO,KAROLINSKA研究所,Karolinska Instutter,17176 Stockholm,Sweenneconcection: ppadmanabhan@ntu.edu.sg(P.P.); balazs.gulyas@ntu.edu.sg(B.G.)
轻度创伤性脑损伤(MTBI)影响22%从阿富汗和伊拉克返回的美国服务人员。由于多种伤害机制造成的异质结构和功能改变,其诊断是具有挑战性的。MTBI主要基于历史(创伤)和临床评估,因为传统的神经影像学方法(例如磁共振成像(MRI)和大脑的计算机断层扫描(CT),通常不会揭示明显的异常异常。同样,根据几个标准,对MTBI后的恢复的评估仅依赖于临床评估。在大脑功能方面,我们假设MTBI反映了神经元种群之间受到干扰的动态相互作用,这是上述技术无法检测到的干扰。在寻求一种客观工具来检测MTBI的存在并评估其恢复时,我们在这里使用了磁脑摄影(MEG),这是一种非常适合评估大脑动态功能状态的模态。具体而言,我们使用同步神经相互作用(SNI)测试来评估257名健康(“对照”)退伍军人的功能性大脑状态,19名退伍军人,具有主动MTBI的临床诊断(“ A-MTBI”),以及18名退伍军人,他们患有MTBI并受到MTBI的痛苦,并在测试时恢复了(已恢复过测试)。逐步线性判别分析(LDA)产生了37个SNI预测因子,这些预测因子对所有257个对照和19个A-MTBI大脑正确分类。然后,我们使用这些预测因子将18 R-MTBI大脑分类为对照或A-MTBI组:9个大脑(50%)被分类为对照,而其他10个(50%)被归类为A-MTBI。这些发现(a)记录了SNI MEG正确检测A-MTBI的力量,以及(b)对临床评估工具的有效性提出了宣布从MTBI恢复的有效性的担忧。在积极方面,我们的结果提供了一个基于大脑的连续性,可以评估MTBI大脑的状态。该措施以及临床评估应明显减少不确定性,并大大改善MTBI恢复的量化,从而指导进一步的治疗。
电磁脑成像是从磁场和电位的非侵入性记录中重建脑活动。这种成像方式的一个持久挑战是估计源的数量、位置和时间过程,特别是对于具有复杂空间范围的分布式脑源的重建。在这里,我们介绍了一种新颖的稳健经验贝叶斯算法,该算法通过两个关键思想可以更好地重建分布式脑源活动:核平滑和超参数平铺。由于所提出的算法建立在稀疏源重建算法 - 香槟的许多性能特征之上,我们将该算法称为平滑香槟。平滑香槟对高水平噪音、干扰和高度相关的脑源活动的影响具有很强的鲁棒性。与基准算法相比,模拟表明平滑香槟在准确确定分布式源活动的空间范围方面具有出色的性能。平滑香槟还可以准确重建真实的 MEG 和 EEG 数据。
电磁脑成像是从磁场和电位的非侵入性记录中重建脑活动。这种成像方式的一个持久挑战是估计源的数量、位置和时间过程,特别是对于具有复杂空间范围的分布式脑源的重建。在这里,我们介绍了一种新颖的稳健经验贝叶斯算法,该算法通过两个关键思想可以更好地重建分布式脑源活动:核平滑和超参数平铺。由于所提出的算法建立在稀疏源重建算法 - 香槟的许多性能特征之上,我们将该算法称为平滑香槟。平滑香槟对高水平噪音、干扰和高度相关的脑源活动的影响具有很强的鲁棒性。与基准算法相比,模拟表明平滑香槟在准确确定分布式源活动的空间范围方面具有出色的性能。平滑香槟还可以准确重建真实的 MEG 和 EEG 数据。