TEAl : 三乙基铝 ( C 2 H5 ) 3 Al TMGa : 三甲基镓 ( CH 3 ) 3 Ga TMIn : 三甲基铟 ( CH3 ) 3 In DETe : 二乙基碲 ( C 2 H5 ) 2 Te DEZn : 二乙基锌 ( C 2 H5 ) 2 Zn CP 2 Mg : 双(环戊二烯基)镁
– 材质:护栅:钢,磷化并涂有黑色塑料 壁环:钢板,预镀锌并涂有黑色塑料 叶片:压制圆形钢板,挤压涂有 PP 塑料 转子:黑色涂层 – 叶片数量:5 – 旋转方向:气流方向“V”逆时针,“A”顺时针,从转子上看 – 防护类型:IP 54(根据 EN 60529) – 绝缘等级:“F” – 安装位置:任意 – 冷凝水排放孔:位于转子和定子侧 – 运行模式:连续运行(S1) – 轴承:免维护滚珠轴承
最近,在光学参数放大器(OPA)中使用中红外(MID-IR)差异频率产生(DFG)的磷化物磷化物(CDSIP 2或CSP)的使用引起了极大的兴趣[1-4]。由于广泛的大气变速箱窗口,该光谱区域(3-5 µm)已被认为对于通信,遥感和定向能源应用很重要,该窗户允许相对较低的损失传播[5,6]。csp是一个四方点组(€4 2 m)负单轴晶体,具有较大的二阶非线性(d 36 = 84.5 pm/v),具有较大的双重双发性(-0.05)(-0.05)(-0.05),大带隙(E G = 2.45 ev),比较大的透明度范围和较低的固定性吸收率在普通的范围内供应较大的材料。 [7]以较低的导热率为代价[8]。先前已经测量了CSP的线性和二阶非线性光学(NLO)特性[8-10]。在这项工作中,我们在近红外(NIR)中测量泵浦波长(1.5 µm和2.0 µm)的非线性吸收(NLA)和非线性屈光度(NLR),并在MID-IR中选择中MID-MIR(3.0 µm m至3.0 µm至5.0 µm)。然后,我们检查了该NLA和NLR对OPA性能的影响。我们表明,在高泵送辐照度下,NLA可以通过增加泵的吸收并降低转化率的效率来成为OPA性能的限制因素。
1 适用的关键矿产包括特定形式的铝、锑、砷、重晶石、铍、铋、铈、铯、铬、钴、镝、铒、铕、萤石、钆、镓、锗、石墨、铪、钬、铟、铱、镧、锂、镥、镁、锰、钕、镍、铌、钯、铂、镨、铑、铷、钌、钐、钪、钽、碲、铽、铥、锡、钛、钨、钒、镱、钇、锌和锆。
纳米技术和光子学领域的最新进展为开发新一代灵活、便携、多功能和高性能光纤传感器提供了可能性,例如基于有损模式谐振 (LMR) 的传感器。由于其灵活性和相对较高的灵敏度,这种新方法在过去 20 年中应运而生,并发现了许多应用,如折射率 (RI) [ 1 ]、电压 [ 2 ]、pH 值 [ 3 ]、湿度 [ 4 ] 和化学检测 [ 5 , 6 ]。此外,由于 RI 灵敏度高,基于 LMR 效应的无标记生物传感器的研究也已有大量报道 [ 7 , 8 ]。这种光学效应发生在光纤上的薄膜中。然而,必须满足基底(光纤)、薄覆盖层和外部介质的介电常数的特定条件。一般来说,薄膜介电常数的实部必须为正,同时其幅度要高于其虚部和分析物的介电常数 [ 7 ]。因此,要获得 LMR,需要选择合适的光纤覆盖材料。许多薄膜材料沉积在石英玻璃上时可以获得 LMR。这些材料包括半导体和金属氧化物或氮化物(氧化铟镓锌 [9]、氮化硅 [10]、氧化铟锡 (ITO) [11]、掺氟氧化锡 (FTO) [12]、氧化锡 [13]、氧化锌 [9, 14]、氧化铟 [15]、氧化钛 [16],以及氧化铪、氧化锆和氧化钽 [17]、类金刚石碳膜 (DLC) [18] 和各种聚合物 [3])。其中一些材料,例如 ITO [19-21] 和 FTO [12],由于其独特的性能,例如良好的电导率和合适的带隙 [22],已被报道能够在光学和电化学两个领域发挥作用(EC)传感器的询问是可以同时进行的。由于多个
自 1993 年 Shuji Nakamura 制成第一只 GaN 基蓝光发光二极管 (LED) 以来 [1],基于 III 族氮化物材料的 LED 发展迅速并得到了广泛的应用。然而,导致绿光 LED 效率低下的“绿光隙”一直未能得到解决,而蓝光和红光 LED 却实现了较高的发光效率 [2,3]。造成上述问题的原因之一是 InxGa1-xN/GaN 多量子阱 (MQW) 中铟组分的增加,而这是为了使 InGaN 基 LED 能够发出更长的波长的光。由于 InGaN 与 GaN 之间的晶格常数和热膨胀系数不匹配 [4,5],以及 InN 在 GaN 中的低混溶性 [6],高铟组分 InGaN QW 的绿光 LED 会遭受晶体质量劣化。同时,还会产生大量的位错,它们充当非辐射复合中心[7],对发光是不利的。另一方面,有源区产生的光很难从高折射率半导体(n GaN = 2.5)逸出到空气中(n air = 1)。内部光的临界角(θ c )或逸出锥仅为~23.6°[θ c = sin −1(n air /n GaN )],超过此角度发射的光子会发生全内反射,因此只有一小部分光可以逸出到周围的空气中[8]。绿光是三原色之一,提高绿光LED的发光效率是实现高效率、高亮度RGB(红、绿、蓝)LED的关键。
目前,正在努力制造由半绝缘材料制成的光电导半导体开关并寻找其潜在应用。本文分析了文献中关于使用 PCSS 开关的参数和可能性,以及目前在电力和脉冲电力电子系统中使用的开关。介绍了基于 GaP 的开关原型模型的实验室测试结果,并将其与文献中的 PCSS 开关参数进行了比较。介绍并讨论了 IGBT 晶体管、晶闸管、光电晶闸管、火花隙和电源开关的工作原理、参数和应用。分析了用 PCSS 开关替换选定元件的可能性,同时考虑了比较器件的优缺点。还讨论了使用目前由磷化镓制成的 PCSS 开关的可能性。
四甲基磷族化合物最近才因其作为红外非线性光学 (IR-NLO) 材料的优势而受到关注,2 - 9 '16 '17 与更受欢迎和研究更多的硫族化物相比。我们为磷化物开发的合成方法包括磷与原子混合的难熔前体预熔 M+Si 的反应,从而发现了几种以前无法获得的化合物。21819 在本研究中,我们将这种方法扩展到砷化物。基于标题化合物 lrSi 3 As 3 的合成和发现的简易性,预计许多其他金属四甲基砷化物也具有同样令人兴奋的特性。报道了 lrSi 3 As 3 的结构-性质关系。
化学蒸气运输的晶体生长Marcus Schmidt#来自不同类别的大量化合物 - 金属间相,Pnictides,Pnictides,氧化物,硫化剂和卤化物已通过化学蒸气运输结晶。最近,一种新的研究重点是在FESI结构类型中结晶的金属间化合物。为各种联合项目提供了所获得的晶体,以研究其物理和化学特性。开发物理测量方法对越来越敏感的系统开发了化学运输的新观点。以前由于其小尺寸而不适合测量的材料现在可以非常精确地表征其物理特性。在2018年之后,niobium和Tantalum的单磷化物和 - 砷化磷成为进一步出版物的主题。
之前使用过的两种技术(铟箔活化 [2] 和 23SU 裂变计数器 [3])都被认为对将要使用的中子场不够敏感或不方便。诸如 3He 谱仪和充满氢的比例计数器等替代方案被认为对背景中子或伽马射线过于敏感。工作组提倡使用邦纳球探测器,并被第 iii 节选为所选能量区域最合适的转移探测器。一组三个直径不同、使用公共中心探测器的球体可用于先前的比较(见第 4 节)。比较涉及邦纳球的循环,以便参与者在其实验室常规使用的中子场中进行校准。