图 1:PDE4C1 检测试剂盒原理图解。该检测使用荧光素标记的环状鸟苷酸(PDE4C1 为 cAMP-FAM),其中磷酸基团与环状核苷酸结合。这是一种旋转速度快(低 FP)的非常小的分子。PDE4C1 催化环状核苷酸中磷酸二酯键的水解并释放磷酸基团。在第二步中,游离磷酸基团被特定的磷酸结合纳米珠(结合剂)识别,从而形成大型复合物,运动受限(高 FP)。FP 与 PDE4C1 活性成正比。该检测需要荧光微孔板读数仪,该读数仪能够测量荧光偏振 (FP),并配备读取 FP 信号所需的部件。有关 FP 技术的更多信息,请访问我们的技术说明:FP、检测原理和应用。注意:截至 2025 年 1 月,此协议已重新优化性能。可根据要求提供此试剂盒的早期版本。背景磷酸二酯酶 (PDE) 通过水解第二信使 cAMP (环磷酸腺苷) 和 cGMP (环磷酸鸟苷) 信号,在动态调节这些信号传导中起重要作用。PDE 超家族由 11 个家族组成,其中 PDE4、7 和 8 是 cAMP 特异性水解酶,因此可调节对其的正向和负向反应。PDE4 是心血管组织中第二丰富的 PDE。PDE4 是一种 cAMP 特异性 PDE,也是最大的 PDE 亚家族,具有超过 35 种不同的同工型,因此也是特征最广泛的 PDE 同工酶。它是大多数炎症细胞和气道平滑肌中的主要同工酶,与炎症性气道疾病有关。PDE4 抑制剂罗氟司特已被批准用于治疗慢性阻塞性肺病 (COPD)。
名称:环状四腺苷单磷酸盐,钠盐Syn。:环状四核酸 / C-A4 / CA 4描述:C-Tetraamp是一种环状核苷酸,其中四个5'-AMP单元通过3'-5'磷酸二酯键相互连接以形成环状结构。特性:发现环状寡磷酸盐(例如C-tetraamp)是与许多原核生物中与侵入性遗传元件相关的III型CRISPR-CAS相关检测和降解的新型细菌第二信使。在识别和结合侵入性靶RNA后,III型干扰络合物的CAS10亚基会产生环状寡腺苷酸盐,进而充当CSM6核糖核酸的变构激活剂,从而降解了入侵者衍生的RNA转录物。建议循环寡核苷酸的大小取决于存在的III型CRISPR-CAS系统,其中c-tetraamp是Thermus Thermophilus中主要的信号分子(根据Kazlauskiene等人的所有数据,(2017)和Niewoehner等。(2017))。规格:结晶或冻干的钠盐。请记住,由于冻干形式对湿度的敏感性,该化合物的相等浓度可能会不同。该化合物甚至可以收缩至小体积液滴。通常,产品位于管的圆锥形底部。微摩尔量通过紫外线以max确定。纯度:典型分析要大于95%(HPLC / UV / 259 nm)。该产品不是无菌的,尚未对内毒素进行测试。打开管子时,请确保在盖子内不会丢失任何物质。溶解度:C-Tetraamp可溶于水和水缓冲液(≥8mm,尚未确定限制)。请仔细,最好使用超声波或涡流来实现总和混合。稳定性和存储:C-Tetraamp在室温下具有足够的稳定性,并且在处理或发货期间不需要特殊护理。尽管如此,我们建议该化合物应在冰箱中存储,在较长的储存周期中,最好以冷冻干燥的形式存储。
DNA中的氮基碱包括腺嘌呤,鸟嘌呤和胞嘧啶,而RNA含有尿嘧啶而不是胸腺素。解旋启动DNA合成,而聚合酶是负责通过在生长链中添加核苷酸来复制DNA的主要酶。DNA的糖磷酸主链由磷酸二酯键一起保持。一个称为复制起源的特定序列是染色体上DNA合成的起点。DNA的双螺旋结构具有主要和次要凹槽,这对于其功能很重要。双螺旋的每个转弯都有这些凹槽,从而允许复制过程发生。在DNA复制过程中,氮基碱的正确配对对于维持遗传信息的完整性至关重要。此过程发生在细胞分裂之前,涉及DNA双螺旋的放松形成两个模板链。领先链是连续合成的,而滞后链则形成短片段,然后通过连接酶将其连接在一起。在复制位点形成Y形结构是过程中的重要一步。RNA或DNA的引物序列是DNA合成的模板,并且在复制完成后必须去除这些引物。参与DNA复制的键酶包括解旋酶,聚合酶和连接酶。旋转酶放松双螺旋,而聚合酶为生长链增添核苷酸。连接酶将滞后链的短片段连接在一起。连接5'和3'时,会形成磷酸酯主链。与DNA复制有关的一些重要术语包括前导链,滞后链,复制的起源和滑动夹具蛋白。DNA复制过程对于忠实地从一代细胞到下一个细胞的遗传信息传播至关重要。仅在RNA中发现的化合物被称为** uracil **,而** okazaki碎片**请参阅滞后链上的短段或片段。DNA的基本三维形状是A **双螺旋**结构,而RNA是单链,不稳定的,并且可以离开细胞核。基因由DNA组成,代表遗传的基本物理和功能单位。通过破坏弱氢键解解酶的酶称为**解旋酶**。平行但在相反方向的两个侧面称为**反平行**。嘧啶由单个碳环组成,而核苷酸由磷酸盐,糖和氮碱组成。DNA是双链,稳定的,并且保持在核内。根据夏尔加夫的统治,鸟嘌呤总是与胞嘧啶配对。核糖是RNA核苷酸中发现的糖,而脱氧核糖是DNA核苷酸中存在的5-碳糖。氢键将DNA的两条链组合在一起,** primase **是负责放下RNA底漆的酶。互补意味着一侧可以与另一侧配对或补充另一侧。由重复核苷酸制成的长聚合物称为DNA。五个氮基是腺嘌呤,鸟嘌呤,胸腺嘧啶,胞嘧啶和尿嘧啶。双螺旋的“主链”是磷酸骨架。** DNA聚合酶**是促催化DNA分子合成的酶中的一种酶。嘧啶衍生物包括三个氮基碱 - 尿嘧啶,胸腺嘧啶和胞嘧啶 - 它们是DNA和RNA的基础。复制涉及半守则复制,其中双螺旋分裂为两个不同的链。嘌呤分子由四个氮原子和六个碳原子组成。嘧啶由一个六元环和两个氮原子和四个碳原子组成。核苷酸是DNA和RNA的构件。** DNA解旋酶**是一种在DNA复制中起重要作用的酶,而氢键在解螺旋酶放松时会破裂。这是文本的重写版本:** DNA结构** DNA的基本构件是由重复核苷酸组成的长聚合物。这些氮碱分为两个主要群体:嘌呤(腺嘌呤,鸟嘌呤)和嘧啶(胸腺胺,胞嘧啶,尿嘧啶)。酶,例如DNA聚合酶,促进了DNA分子的合成。**复制过程**在半守保持复制期间,双螺旋分裂为两个单独的链。这些链充当新DNA合成的模板。该双螺旋的“骨干”由磷酸盐组组成。**核苷酸特征**嘌呤(例如腺嘌呤和鸟嘌呤)由一个六元环组成,带有四个氮原子和六个碳原子,而嘧啶(例如胸腺胺和细胞儿童)具有两个六氮环,具有两个六氮气,带有两个硝基原子和四个碳原子的环。核苷酸是DNA和RNA的基本单位。**涉及的酶** DNA解旋酶通过放开双螺旋在复制过程中起着至关重要的作用,这最终导致链分离。**氢键**作为解旋酶放松DNA链,核苷酸之间的氢键被损坏,从而使链分开。
摘要 从埃及土壤和食物来源中分离出产生磷脂酶 C (PLC) 的细菌。通过 16S rRNA 测序,将一种强效假单胞菌分离物鉴定为 P. fluorescens MICAYA,并以基因登录号 (OQ231499) 记录在 GenBank 中。通过 Plackett Burman 和中心复合设计进行优化发现,豆粕、酵母提取物、NaCl 和蛋黄显著提高了磷脂酶 C 的产量。Michaelis-Menten 动力学确定了 K m 为 0.4 mg/ml 蛋黄,V max 为 287 U/ml。Box Behnken 设计确定了 395 U/ml 磷脂酶 C 产量的最佳 pH 值为 6.5、0.55 g/l CaCO 3、1.05% 蛋黄、48.5°C。该磷脂酶对人成纤维细胞表现出低细胞毒性。磷脂酶 C 浓度(0.2-1 ml)可有效脱胶芝麻、洋甘菊、西洋菜、荷荷巴油、橄榄、黑种草和蓖麻油。磷脂酶 C 浓度为 0.4-0.8 ml/L 时磷脂减少率最高。荧光假单胞菌磷脂酶 C 提供了一种可生物降解的化学脱胶替代方法。总之,统计优化成功提高了磷脂酶 C 的产量。表征发现该酶在碱性 pH、中等温度和蛋黄底物下效果最佳。已证明多种植物种子油具有生物脱胶能力。进一步固定化和蛋白质工程可以提高磷脂酶 C 的工业效用。关键词:磷脂酶 C;荧光假单胞菌;培养基优化;油脱胶;酶动力学。 _____________________________________________________________________________________________________________ 1. 简介 磷脂酶 (PLC) 水解磷脂骨架中的磷酸二酯键,根据所涉及的具体磷脂种类产生 1,2-二酰基甘油和磷酸单酯。微生物磷脂酶是催化磷脂水解的酶。由于其广泛的底物特异性、温和条件下的高活性以及易于大规模生产,它们具有广泛的工业应用 [1]。磷脂酶已被用于修改磷脂结构以生产特定脂质、脱胶植物油、合成化妆品成分、改善面团的烘焙特性、产生风味和香气等 [2]。真菌、细菌和酵母等微生物来源的磷脂酶比植物和动物来源具有优势,因为它们可以通过发酵以高产量和纯度生产 [3]。最有效的真菌生产者是黑曲霉、环青霉和少根根霉。黑曲霉可产生高产量的磷脂酶 A1 和 A2 [4]。固定化黑曲霉磷脂酶 A2 对植物油的重复脱胶表现出良好的稳定性 [5]。最常见的细菌生产者是假单胞菌和芽孢杆菌。铜绿假单胞菌和蜡状芽孢杆菌产生胞外磷脂酶 C [6,7]。枯草芽孢杆菌分泌磷脂酶 A2,并且已经通过基因改造以提高产量。在稳定期,荧光假单胞菌可以产生各种具有抗菌潜力的次级代谢物,例如氢氰酸 (HCN)、绿脓杆菌素 (Pit) 和 2,4-二乙酰间苯三酚 (Phi),以及铁螯合代谢物 [8]。绿脓杆菌素、水杨酸和绿脓杆菌素。蛋白酶、磷脂酶 C 和脂肪酶是从各种环境中分离的荧光假单胞菌菌株产生的三种细胞外酶的例子 [9]。在稳定生长期测定的磷脂分解活性水平最高,表明生长阶段依赖机制负责诱导这些酶。此外,酵母生产者是隐球菌,它被固定化并用于大豆油脱胶。 Candida rugosa 是一种脂肪酶和磷脂酶生产者,固定化 C. rugosa 脂肪酶用于结构化脂质的生产 [10]。微生物磷脂酶,如磷脂酶 A1、A2、C 和 D,在脱胶、油脂酯交换、卵磷脂生物合成和废水处理应用中表现出良好的应用前景 [11]。它们的酶水解导致磷脂部分水解,使胶的分离更容易 [12]。响应面法 (RSM) 被有效地用于各种微生物产品的优化和建模 [13]。该方法结合了统计和数学技术,用于模型构建、评估几个独立变量的影响并获得变量的最优值。因此,本研究的目的是利用响应面法的统计方法优化荧光假单胞菌磷脂酶 C 的生产和表征,并研究其在某些植物油脱胶中的应用。油脂的酯交换、卵磷脂的生物合成和废水处理应用 [11]。它们的酶水解导致磷脂的部分水解,使胶的分离更容易 [12]。响应面法 (RSM) 被有效地用于各种微生物产品的优化和建模 [13]。该方法结合了统计和数学技术,用于模型构建、评估几个独立变量的影响并获得变量的最优值。因此,本研究的目的是利用响应面法的统计方法优化荧光假单胞菌磷脂酶 C 的生产和特性,并研究其在某些植物油脱胶中的应用。油脂的酯交换、卵磷脂的生物合成和废水处理应用 [11]。它们的酶水解导致磷脂的部分水解,使胶的分离更容易 [12]。响应面法 (RSM) 被有效地用于各种微生物产品的优化和建模 [13]。该方法结合了统计和数学技术,用于模型构建、评估几个独立变量的影响并获得变量的最优值。因此,本研究的目的是利用响应面法的统计方法优化荧光假单胞菌磷脂酶 C 的生产和特性,并研究其在某些植物油脱胶中的应用。
基因工程是指对基因结构的操纵或改变,以在生物体中产生所需的特征。此过程涉及破坏和连接DNA分子,以及从一种物种将基因移植或剪接基因进入另一种宿主物种。如果添加来自其他物种的遗传物质,则可以称为转基因。基因工程主要集中于操纵遗传物质(DNA)以预定的方式实现特定目标。这可能涉及更改一个碱基对(A-T或C-G),删除DNA的整个区域,或引入基因的其他副本。它也可能涉及从另一生物的基因组中提取DNA,并将其与个人自己的DNA结合。通过基因工程改变的植物,动物或微生物被称为转基因生物(GMO)。如果将来自另一种物种的遗传物质添加到宿主中,则该术语适用于宿主。Cisgenic是指使用可以自然与宿主繁殖的物种中的遗传物质,而当从靶向生物中去除遗传物质时,敲除生物会产生敲除生物。基因工程的历史可以追溯到1970年代,杰克·威廉姆森(Jack Williamson)在他的科幻小说小说《龙岛》(Dragon's Island)中首先创造了一词。赫伯特·博耶(Herbert Boyer)和斯坦利·科恩(Stanley Cohen)在1973年将抗生素抗性基因插入大肠杆菌细菌中创建了第一个转基因生物。1986年在法国和美国对第一批基因工程植物进行了测试,烟草植物设计为具有抗除草剂的抗性。1。2。基因工程的应用包括科学研究,农业和技术。在植物中,它提高了土豆,西红柿和大米等农作物的韧性,营养价值和生长速度。在动物中,它已被用来开发在其牛奶中产生治疗蛋白的绵羊,以治疗囊性纤维化,或者在黑暗中发光的蠕虫。遗传工程可用于从目标生物体中去除遗传物质,从而产生敲除生物。此过程涉及操纵DNA分子以实现特定目标,并在各个领域具有深远的影响。允许科学家通过了解遗传因素来研究像阿尔茨海默氏症这样的疾病。转基因的生物用于农业,医学和其他领域。其中包括已设计为具有理想性状或特征的转基因植物,动物,甚至人类。此类生物的例子包括Flavr Savr番茄,BT-COTTON,金米,蓝色玫瑰,发光鱼和绵羊Dolly。基因工程涉及使用各种工具和技术修改生物体的DNA。这些工具(称为分子剪刀和分子胶)用于切割和连接DNA序列,使科学家可以引入新基因或修改现有基因。在产生胰岛素,酵母和细菌的情况下。大肠杆菌经过基因设计以产生类似人类的胰岛素,后来批准用于糖尿病患者。然后将所得的胰岛素纯化并包装以分配。3。4。5。6。此过程涉及多个步骤,包括从细菌中提取质粒DNA,使用限制酶切割质粒,将其插入人类胰岛素的基因,将修饰的质粒引入新细胞中,并生长这些细胞以产生大量的胰岛素。遗传工程师还利用分子工具,例如限制性核酸内切酶,在特定位置切割DNA和DNA连接酶,将DNA片段融合在一起。**分子剪刀:限制位点**限制位点,也称为分子剪刀,是具有特定点的DNA分子,可以使用限制性酶切割双链DNA。**生物学作用和防御机制**大多数细菌都使用限制酶来防御噬菌体(感染细菌的病毒)。这些酶通过将其DNA在特定部位切割,以甲基DNA在腺嘌呤或胞嘧啶碱基中保护宿主DNA来防止噬菌体复制。**限制酶的历史**第一个限制酶在1970年由Hindlil分离出来。从那时起,已经研究了超过3000个酶,并且有600多种可用于DNA修饰和操纵。**作用机理**限制性核酸内切酶扫描DNA的长度,与特定序列结合,并通过水解磷酸二酯键在双螺旋的每个糖磷酸骨架中切成一个切割。**限制片段的类型**限制酶产生两种类型的切割:钝的末端和粘性末端。钝器末端可以连接到任何其他带有钝端的DNA碎片,而粘性末端可以结合起来从不同来源创建新分子。7。**交错的切割和粘性末端**大多数限制性酶会产生交错的切割,产生单链的“粘性末端”。这些粘性末端是互补的,可以从不同来源创建和操纵DNA序列。**限制性酶**限制性核酸内切酶分为三个一般组:I型,II型和III型,基于其组成,酶辅因子的需求,靶序性性质和DNA裂解位点相对于目标序列。在这里给出的文本•基因工程通过允许对遗传物质进行精确修改,从而显着影响了医学,取证和农业领域。•选择性育种涉及在生物体中选择特定特征以传递到其后代。•基因剪接可以使用实验室技术(例如PCR)故意改变DNA序列。•克隆涉及通过重复的PCR过程创建多个基因的副本,然后将其插入其他DNA链中以产生蛋白质。•可以通过将基因从一个生物体移植到另一种生物来创建遗传修饰的生物(GMO),从而导致以前不存在新的特征。•转基因生物的例子包括太阳托里的“蓝色”玫瑰,产生一种用于血液凝血疾病的稀有蛋白质的山羊,以及为不足者提供维生素补充维生素的金米。转基因的生物:GMO,基因疗法,干细胞,克隆和取证DNA指纹的概述揭示了样本之间的相似性,有助于证明或建立家庭关系,而人类基因组项目则解释了人类DNA,以了解人类DNA,以了解疾病和推动各种领域的科学突破,并在各种领域中驾驶,并在各种领域中进行效果。
摘要 通过大肠杆菌内核的损坏DNA的特征(单链断裂)III,IV和VI以及通过噬菌体T4 UV鼻核ASE进行了研究,已通过E coli dna Polymerase I(DNA Polymerase I(DNA coletidylyclase ind of DNA)的dna-nicks Incriv dna-dna-dna in nicks dna complose se a聚合酶的末端,而核酸内切酶III或通过T4紫外线溶液引入脱固定的DNA的痕迹却没有。 该结果表明核酸内切酶IV尼古克在源自核酸位点的5'侧降低了DNA,而核酸内切酶VI也是如此,而核酸内切酶III具有不同的切口机制。 t4紫外核酸内切酶还具有apur- inic核酸内切酶活性,该活性在聚合酶的脱尿中产生了脱尿的DNA,对聚合酶的启动活性低。 通过与核酸内切酶VI的额外孵育,可以增强用核酸内切酶III或T4 UV内核酸酶划分的DNA的启动活性,并在较小程度上与核酸内切酶IV孵育。 这些结果表明,核酸内切酶III和T4 UV核酸内切酶(分别作用于撤离和放射性的DNA)产生含有3末端的载膜/阿哌丁汀位点的划痕,并且这些位点并未通过DNA Polymase I. divne divne的3' -5'活性来[' -5' - 5' - 5' 然而,核酸内切酶IV或VI显然可以去除未经零件位点的5'侧的末端肾上腺素/apyrimidinic位点以及裂解。 这些结果表明,在DNA中肾上腺素/III,IV和VI的连核III,IV和VI的作用。通过大肠杆菌内核的损坏DNA的特征(单链断裂)III,IV和VI以及通过噬菌体T4 UV鼻核ASE进行了研究,已通过E coli dna Polymerase I(DNA Polymerase I(DNA coletidylyclase ind of DNA)的dna-nicks Incriv dna-dna-dna in nicks dna complose se a聚合酶的末端,而核酸内切酶III或通过T4紫外线溶液引入脱固定的DNA的痕迹却没有。 该结果表明核酸内切酶IV尼古克在源自核酸位点的5'侧降低了DNA,而核酸内切酶VI也是如此,而核酸内切酶III具有不同的切口机制。 t4紫外核酸内切酶还具有apur- inic核酸内切酶活性,该活性在聚合酶的脱尿中产生了脱尿的DNA,对聚合酶的启动活性低。 通过与核酸内切酶VI的额外孵育,可以增强用核酸内切酶III或T4 UV内核酸酶划分的DNA的启动活性,并在较小程度上与核酸内切酶IV孵育。 这些结果表明,核酸内切酶III和T4 UV核酸内切酶(分别作用于撤离和放射性的DNA)产生含有3末端的载膜/阿哌丁汀位点的划痕,并且这些位点并未通过DNA Polymase I. divne divne的3' -5'活性来[' -5' - 5' - 5' 然而,核酸内切酶IV或VI显然可以去除未经零件位点的5'侧的末端肾上腺素/apyrimidinic位点以及裂解。 这些结果表明,在DNA中肾上腺素/III,IV和VI的连核III,IV和VI的作用。通过大肠杆菌内核的损坏DNA的特征(单链断裂)III,IV和VI以及通过噬菌体T4 UV鼻核ASE进行了研究,已通过E coli dna Polymerase I(DNA Polymerase I(DNA coletidylyclase ind of DNA)的dna-nicks Incriv dna-dna-dna in nicks dna complose se a聚合酶的末端,而核酸内切酶III或通过T4紫外线溶液引入脱固定的DNA的痕迹却没有。 该结果表明核酸内切酶IV尼古克在源自核酸位点的5'侧降低了DNA,而核酸内切酶VI也是如此,而核酸内切酶III具有不同的切口机制。 t4紫外核酸内切酶还具有apur- inic核酸内切酶活性,该活性在聚合酶的脱尿中产生了脱尿的DNA,对聚合酶的启动活性低。 通过与核酸内切酶VI的额外孵育,可以增强用核酸内切酶III或T4 UV内核酸酶划分的DNA的启动活性,并在较小程度上与核酸内切酶IV孵育。 这些结果表明,核酸内切酶III和T4 UV核酸内切酶(分别作用于撤离和放射性的DNA)产生含有3末端的载膜/阿哌丁汀位点的划痕,并且这些位点并未通过DNA Polymase I. divne divne的3' -5'活性来[' -5' - 5' - 5' 然而,核酸内切酶IV或VI显然可以去除未经零件位点的5'侧的末端肾上腺素/apyrimidinic位点以及裂解。 这些结果表明,在DNA中肾上腺素/III,IV和VI的连核III,IV和VI的作用。通过大肠杆菌内核的损坏DNA的特征(单链断裂)III,IV和VI以及通过噬菌体T4 UV鼻核ASE进行了研究,已通过E coli dna Polymerase I(DNA Polymerase I(DNA coletidylyclase ind of DNA)的dna-nicks Incriv dna-dna-dna in nicks dna complose se a聚合酶的末端,而核酸内切酶III或通过T4紫外线溶液引入脱固定的DNA的痕迹却没有。该结果表明核酸内切酶IV尼古克在源自核酸位点的5'侧降低了DNA,而核酸内切酶VI也是如此,而核酸内切酶III具有不同的切口机制。t4紫外核酸内切酶还具有apur- inic核酸内切酶活性,该活性在聚合酶的脱尿中产生了脱尿的DNA,对聚合酶的启动活性低。通过与核酸内切酶VI的额外孵育,可以增强用核酸内切酶III或T4 UV内核酸酶划分的DNA的启动活性,并在较小程度上与核酸内切酶IV孵育。这些结果表明,核酸内切酶III和T4 UV核酸内切酶(分别作用于撤离和放射性的DNA)产生含有3末端的载膜/阿哌丁汀位点的划痕,并且这些位点并未通过DNA Polymase I. divne divne的3' -5'活性来[' -5' - 5' - 5'然而,核酸内切酶IV或VI显然可以去除未经零件位点的5'侧的末端肾上腺素/apyrimidinic位点以及裂解。这些结果表明,在DNA中肾上腺素/III,IV和VI的连核III,IV和VI的作用。我们使用T4 UV核酸内切酶的结果表明,T4紫外核酸内切酶对辐照DNA的切口涉及在嘧啶二聚体的5'一半处的糖基键的裂解,又涉及磷酸二二聚体的裂解,又是磷酸二酯键的裂解,最初连接了两个核位核位核苷酸的两个核苷酸。他们还暗示糖基键在磷酸酯键之前切割。