摘要:在远离现有功能的化学反应中对位点选环的控制仍然是合成化学的挑战。我们描述了一种策略,该策略使三个最常用的交叉耦合过程具有对带有酸性官能团的二氯烯烯的高位点选择性。我们通过重新利用已建立的磺化磷酸配体来利用其固有的分支性来实现这一目标。的机理研究表明,磺酸盐基团与去质子化底物的相关阳离子进行了有吸引力的静电相互作用,从而将交叉耦合引导至芳烃元位置的氯化物。在考虑与直接催化的非交互相互作用时,这种阴离子配体和阴离子底物恶魔的违反直觉组合构成了另一种设计原理。
脂肪族烃:烷烃 - 命名法、异构现象、构象(仅乙烷)、物理性质、化学反应(包括卤化、燃烧和热解的自由基机理)。烯烃 - 命名法、双键(乙烯)结构、几何异构现象、物理性质、制备方法、化学反应:氢、卤素、水、氢卤化物(马尔可夫尼科夫加成和过氧化物效应)的加成、臭氧分解、氧化、亲电加成机理。炔烃 - 命名法、三键(乙炔)结构、物理性质、制备方法、化学反应:炔烃的酸性、氢、卤素、氢卤化物和水的加成反应。芳香烃:简介、IUPAC 命名法、苯:共振、芳香性、化学性质:亲电取代机理。硝化、磺化、卤化、Friedel Craft烷基化和酰化、单取代苯中功能团的指导影响。致癌性和毒性。
抽象的氢硫(H 2 s)是三个已知的气信号传感器之一,由于报道了其潜在的生理作用,因此H 2 S上的文献一直在增加。h 2 s参与了血管舒张,神经传递,血管生成,炎症和预防缺血 - 再灌注损伤等过程,其机制尚待进一步研究。目前,蛋白质翻译后加工的作用已被视为H 2 S参与多种生理过程的可能机制。当前的研究表明,H 2 s参与了蛋白质的S-磺化,磷酸化和S-硝基化。本文着重于涉及H 2 S对生理和病理过程的蛋白质修饰的影响,期待为后续研究提供指导。ª2022作者。Elsevier B.V.的发布服务代表KEAI Communications Co.,Ltd.这是CC下的开放式访问文章(http://creativecommons.org/licenses/by by/4.0/)。
dsir-crtdh在CSIR-NCL上,Pune正在通过连续的流量合成及其制造规模来从事化学中间体,染料和着色剂行业的过程加剧。各种反应的广泛谱系,例如芳香硝化,重氮化和耦合,Meerwein芳基化,亚磺化,硫化,胺化,氨基化,溴化,氯化,氯化,氯化,氟化,氟化,grignard,Grignard,Grignard反应,岩性反应,冰分分解,氧化氧化,氧化氧化,远程氧化,远离抗氧化,以及抗氧化剂,并构成了氧化度<氧化度<氧化剂,并抗凝结效应,并构成杂种化,并构成杂种化,远程抗化>已经在不同的尺度上成功证明(从千克/天到吨/天不等)。研讨会的目的是展示一些案例研究(偶氮染料,酸染料,反应性染料和基本染料),并详细介绍CSIR-NCL在与该行业中的MSMES合作时遵循的方法。研讨会将与IIT Gandhinagar教职员工一起进行,并在持续过程的安全和Hazop分析方面具有专业知识。
摘要在许多发展中国家中使用超塑料的使用非常罕见。然而,其包含在混凝土中增强了混凝土的机械和耐用性能。文献中存在关于混凝土中磺化萘甲醛(SNF)超塑料的性能的文献差距,尤其是在撒哈拉以南建筑业中,生产中使用的聚集物的质量值得怀疑。这项研究产生了用局部采购的坑砂生产的两批混凝土,其特征强度为30 MPa。一批没有SNF超塑料来作为对照,而另一批是通过掺入超塑料制成的。研究了压缩和弯曲强度,弹性和动态模量的新鲜特性,以及缩写和弯曲强度的硬化特性。此外,研究了包括吸附,吸水,吸水性,氯化物穿透,电阻率和酸发作的耐用性指标。该研究的结果表明,在混凝土中掺入SNF超塑剂可提高可加工性和混凝土内离子迁移率的降低。这归因于互连孔的存在下降,从而导致机械性能的显着增强,例如增加强度,以及弹性和动态模量的改善。此外,含有SNF超级增塑剂的混凝土比没有SNF超塑料的混凝土更好地保护混凝土免受酸性攻击。该研究建议在混凝土中使用SNF超塑剂来提高可加工性,通过更少的互连孔减少离子运动以及增强的机械性能,从而有可能提高整体耐用性。关键字:SNF超显影剂,新鲜特性,硬化特性,耐用性指标,酸性攻击,本地沙
纳米过滤(NF)提供了一种可扩展且节能的方法,用于从盐湖中提取锂。然而,由于其水合离子半径的紧密相似性,锂与镁的选择性分离,尤其是在镁浓度高的盐水中,仍然是一个重大挑战。有限的LI + / mg 2 +当前NF膜的选择性主要归因于对孔径和表面电荷的控制不足。在这项研究中,我们报告了结合功能化的磺化carge胶以调节界面聚合过程的层间薄膜复合材料(ITFC)膜的发展。该集成的层间在控制胺基单体的扩散和空间分布中起着至关重要的作用,从而导致形成致密的纳米条纹聚酰胺网络。与常规的TFC膜相比,这些结构改进,包括精致的孔径和减少负电荷可显着提高LI + /Mg 2 +选择性(133.5)和渗透率增加2.5倍。此外,纳米条纹结构优化了膜过滤区域,同时最大程度地降低了离子传输抗性,从而有效克服了离子选择性和渗透性之间的传统权衡。这项研究强调了ITFC膜在达到高锂纯度和恢复的潜力,为大规模从盐水中提取大规模锂的途径有前途的途径。
sika®Viscocrete®GL3007是一种基于聚羧酸醚(PCE)聚合物的创新最新性超级塑料,并且专门设计用于Ready-Mix Concrete。sika®Viscocrete®GL3007与惯性超塑剂分化,例如基于磺化萘甲醛的甲醛,因为它基于一个独特的羧基乙醚多物质,并具有长侧向链。这极大地改善了Ce fors Demention。在混合过程开始时发生相同的静电分散剂,但与聚合物背骨相关的侧链的主体产生了一个空间的阻碍,从而稳定Ceme NT颗粒的能力分离和分散。这种机制提供了可流动的混凝土,并且需水量大大减少。sika®Viscocrete®GL3007是一种创新的最新一代Superplastizer,基于聚羧酸(PCE)聚合物,并且专门针对现成混凝土设计。sika®Viscocrete®GL3007与常规超塑剂分化,例如基于硫化萘甲甲甲烷甲状腺甲状腺肿的含量,因为它基于具有较长侧链的独特羧基醚聚合物。这大大改善了水泥分散。与聚合物主链相关的侧链的静电分散液构成,产生了一个空间的阻滞,从而稳定Ceme NT颗粒的能力,可分散和分散。这种机制提供了可流动的混凝土,并且需水量大大减少。
从可植入电极中的长期和高质量的信号采集性能是建立稳定且有效的脑部计算机界面(BCI)连接的关键。脑组织的炎症反应阻碍了植入电极的慢性性能。为了解决生物界面电极的材料局限性,我们将磺化二氧化硅纳米颗粒(SNP)设计为聚(3,4-乙基二苯二甲苯)(PEDOT)(PEDOT)的掺杂剂,以修改可植入的电极。在这项工作中,通过电化学沉积在PEDOT中通过电化学沉积(NI-CR)合金电极和碳纳米管(CNT)纤维电极纳入PEDOT,而不会影响急性神经信号记录能力。在用PEDOT/SNP-MT涂层后,两个电极的电荷存储能力显着增加,并且在NI-CR合金电极的1 kHz处的电化学阻抗显着降低,而CNT电极的电极显着降低。此外,这项研究还检查了每隔一天的电触发MT释放对大鼠海马植入神经电极的神经记录质量和寿命1个月的影响。两种MT修饰的NI-CR合金电极和CNT电极在26天记录后均显示出明显更高的尖峰振幅。显着地,组织学研究表明,植入的NI-CR合金电极周围的星形胶质细胞数量显着降低了MT释放后。这些结果证明了PEDOT/SNP-MT治疗在改善慢性神经记录质量可能通过其抗渗透性特性改善的有效结果。
进行了这项研究,以尝试适应约会棕榈CV中的干旱和盐胁迫(DS)(PEG-6000 + NaCl)。Barhee在体外植入,牢记DS的有害影响。在dactylifera L.上进行了体外实验,以检查三角诺醇(Tria),生长属性以及DS下的某些生化成分的应用的功效。最佳治疗是10 µg L –1三亚三亚三亚三亚三亚菌。DS下的这种治疗方法改善了愈伤组织的生长,并将其重量提高到215.0 mg。在DS应力下,这种治疗方法还显示出最高的响应率和每个罐子的芽数(分别为72.23%和10.30芽)。三亚三细胞增强的DS耐受性。在增加Ca 2+,Mg 2+和K+以及Fe 2+和叶绿素颜料的DS下,这种处理也更有效。这些结果还表明,在DS下使用10 µg L –1 Tria作为补充剂可以将SOD,APX和PAL活性增加到31.68、3.377单位G – 1 min –1和33.78%。数据分析还表明,使用10 µg L –1 TriA的应用通过减少甲磺化(MDA)(MDA)和H 2 O 2在压力组织中的含量为1.06和1.278μmg的新鲜重量(FW)来抵消DS诱导的有害作用。我们的工作可以通过SDS-PAGE揭示蛋白质条带数量和数量的详细变化。新的蛋白质带出现在两种经过三亚处理植物的压力中。本研究的结果将有助于快速克隆日期棕榈传播,可用于增强植物对干旱和盐胁迫的耐受性。
多糖和蛋白质等天然聚合物被广泛用作制造先进材料的基质[1-4]。在众多的天然聚合物中,细菌纳米纤维素 (BNC)、纤维素纳米纤维 (CNF) 和纤维素纳米晶体 (CNC)(即纤维素的三种纳米形式)目前在现代科学和技术领域备受关注[5-7]。这些纳米级纤维素基质的环保性质、独特性能和多种功能正在被研究,以设计先进的纳米复合材料和纳米杂化材料,应用于力学、光学、电子、能源、环境、生物和医学等众多领域。纳米材料特刊的标题为“先进的纳米纤维素基材料:生产、特性和应用”,汇集了来自世界顶尖科学家研究纳米纤维素的原创研究和评论文章。因此,本期特刊收集了一篇关于纤维素纳米材料表征的评论论文 [8] 和八篇研究论文,重点关注 BNC [9-11]、CNF [12-15] 和 CNC [16] 用作复合材料的增强材料 [13-15] 以及生产燃料电池的离子交换膜 [9]、组织工程和伤口愈合的贴片 [10, 11] 以及用于癌症治疗的纳米系统或纳米载体 [15, 16]。在题为“纳米级红外光谱表征纤维素纳米材料的最新进展”的论文中,Zhu 等人。 [ 8 ] 综述了当前最先进的纳米级红外光谱和成像技术,即基于原子力显微镜的红外光谱 (AFM-IR) 和红外散射扫描近场光学显微镜 (IR s-SNOM),在表征纤维素纳米材料方面的应用最新进展。作者指出,AFM-IR 和 IR s-SNOM 是两种用于纳米级空间分辨率成分分析和化学映射的技术,还可以提供有关纤维素纳米材料的机械、热和电性能的深刻信息 [ 8 ]。Vilela 等人的研究。 [9] 证明了将 BNC(即微生物胞外多糖)与水溶性阴离子磺化木质素衍生物(即木质素磺酸盐)和天然交联剂(即单宁酸)结合起来生产具有良好机械性能(最大杨氏模量约 8.2 GPa)和吸湿能力(48 小时后约 78%)和最大离子电导率为 23 mS cm−1(在 94 ◦ C 和 98% 相对湿度下)的独立均质膜的可行性。尽管所实现的电导率值与文献中报道的其他全生物基离子交换膜相当或更高,但它们仍然比目前燃料电池中使用的标准商用 NafionTM 离聚物低两个数量级。尽管如此,作者认为,这项研究可能有助于开发环境友好型导电隔膜的漫长而艰辛的道路,特别是通过利用农业和工业副产品的剩余原材料 [ 9 ]。Kutov á 等人的研究也同样有趣。[ 10 ] 研究了干燥方法(风干或冷冻干燥)和随后的氩等离子体改性对导电隔膜的影响。