5 住院外科医生,普通医学部 ESIC PGIMSR,班加罗尔。Arpithg01@gmail.com 摘要简介:糖尿病肾病 (DN) 是糖尿病的主要微血管并发症之一。,大约 40% 的 2 型糖尿病患者会患上这种疾病。血清 γ-谷氨酰转移酶 (GGT) 是一种细胞表面酶,常用作肝损伤的生物标志物。血清 γ-谷氨酰转移酶 (GGT) 与肾功能障碍之间的关系尚无定论。在本研究中,我们研究了血清 GGT 与确诊为 2 型糖尿病患者的糖尿病肾病 (DN) 之间的关系。方法:本研究共纳入 119 名门诊或住院糖尿病患者。分析了全血液检查。记录了每个参与者的 GGT、微量白蛋白尿、尿素、肌酐和肾脏大小。结论:在我们的研究中,GGT 升高与 2 型糖尿病患者的糖尿病肾病独立相关。血清 GGT 是糖尿病肾病风险的良好指标,可用作糖尿病肾病的预测指标。关键词:糖尿病肾病 (DN) · γ-谷氨酰转移酶 (GGT) · 2 型糖尿病 (T2DM),白蛋白*通信作者:电子邮件:avinashhr19@gmail.com 收到:2024 年 10 月 24 日接受:2024 年 10 月 29 日 DOI:https://doi.org/10.53555/AJBR.v27i3.3178 © 2024 作者。本文根据知识共享署名-非商业性使用 4.0 国际许可协议 (CC BY-NC 4.0) 发布,允许在任何媒体中进行非商业性的无限制使用、分发和复制,但必须提供以下声明。 “本文发表于《非洲生物医学研究杂志》” 简介:糖尿病 (DM) 是一种以微血管和大血管并发症为特征的全身性疾病,在世界范围内正成为日益严重的问题 [1]。糖尿病肾病 (DN) 是糖尿病的主要微血管并发症之一,大约 40% 的 2 型糖尿病患者会患上糖尿病肾病 [2]。糖尿病肾病与重大心血管风险和代谢紊乱一起,正在成为人类健康的一个严重问题 [1, 2,3]。几十年来,DN 导致的死亡率急剧上升
研究文章 分子对接和模拟研究预测乳酰辅酶 A 是 p300 定向乳酸化的底物 Rushikesh Patel 1、Ajay Kumar 1#、Kiran Bharat Lokhande 2#、KV Swamy 2,3、Jayanta K. Pal 1、Nilesh Kumar Sharma 1 * 1 癌症和转化研究实验室,Dr. DY Patil 生物技术与生物信息学研究所,Dr. DY Patil Vidyapeeth,浦那,马哈拉施特拉邦,印度,411033。 2 生物信息学实验室,Dr. DY Patil 生物技术与生物信息学研究所,Dr. DY Patil Vidyapeeth,浦那,马哈拉施特拉邦,印度,411033。 3 生物信息学研究组,麻省理工学院生物工程科学与研究学院,麻省理工学院-ADT 大学 Pun,马哈拉施特拉邦,印度,412201。# 贡献相同,并列第二作者 *通讯作者:Nilesh Kumar Sharma 博士 癌症和转化研究实验室教授 生物技术系 Dr. DY Patil 生物技术与生物信息学研究所,浦那 Dr. D. Y Patil Vidyapeeth 浦那,浦那,MH,411033 电子邮件:nilesh.sharma@dpu.edu.in 电话:+91-7219269540 ORCID ID:Nilesh Kumar Sharma 博士 https://orcid.org/0000-0002-8774-3020 致谢:作者感谢印度政府新德里 DST-SERB(SERB/LS-1028/2013)和印度浦那 Dr. DY Patil Vidyapeeth(DPU/05/01/2016)的资金支持。本稿件已在“bioRxiv”上作为预印本发布。利益冲突 作者声明他们没有利益冲突。 道德声明:本研究不涉及任何道德问题。
乙酰乳酸合酶(ALS)或乙酰羟基酸合酶(AHAS)是分支链必需氨基酸丝线,Leucine,Leucine和Isopoilucine的生物合成途径中的第一个酶(1,2)。来自五个化学组的磺酰脲(SU),咪唑酮(IMI),三唑吡吡咪定(TP),嘧啶基 - 硫代苯甲酸盐(PTB)和磺酰基 - 氨基氨基苯甲酸 - 氨基苯甲基 - 苯甲酸 - 苯二唑诺酮(SCT)抑制Als Amniv的序列化的除草剂。 乙酰乳酸合酶抑制剂除草剂自1982年首次引入(3)以来,已广泛用于世界农业。 因此,许多对ALS抑制剂除草剂具有抗性的农作物已被商业化,例如耐药玉米,低芥酸菜籽,小麦,大米和葵花籽,以及抗性的大豆,向日葵和高粱(4)。 但是,耐药的杂草很快出现了,即 在1987年在美国确定的抗性刺芽生菜(5)。 从那时起,由于ALS基因中的点突变,许多物种在全球范围内进化了对这些除草剂的抗性,ALS基因中的点突变产生了ALS蛋白中的氨基酸取代(AAS),因此对除草剂的敏感性降低,但其固有的生物学功能(6)。 研究人员报道了至少29个AA,在8个ALS肽位置赋予除草剂耐药性(A 122,P 197,A 205,D 376,R 377,R 377,W 574,W 574,S 653和S 653和G 654)在60多种物种中(氨基酸编号对应于Als Als Als in Alibiana in Abiriana thaliana thaliana thaliana thaliana thaliana thaliana in Als Als)。 基因遗传力的研究(7-9)表明,与ALS相关的除草剂耐药性由具有可变程度的优势程度的核基因控制。除草剂。乙酰乳酸合酶抑制剂除草剂自1982年首次引入(3)以来,已广泛用于世界农业。因此,许多对ALS抑制剂除草剂具有抗性的农作物已被商业化,例如耐药玉米,低芥酸菜籽,小麦,大米和葵花籽,以及抗性的大豆,向日葵和高粱(4)。但是,耐药的杂草很快出现了,即在1987年在美国确定的抗性刺芽生菜(5)。从那时起,由于ALS基因中的点突变,许多物种在全球范围内进化了对这些除草剂的抗性,ALS基因中的点突变产生了ALS蛋白中的氨基酸取代(AAS),因此对除草剂的敏感性降低,但其固有的生物学功能(6)。研究人员报道了至少29个AA,在8个ALS肽位置赋予除草剂耐药性(A 122,P 197,A 205,D 376,R 377,R 377,W 574,W 574,S 653和S 653和G 654)在60多种物种中(氨基酸编号对应于Als Als Als in Alibiana in Abiriana thaliana thaliana thaliana thaliana thaliana thaliana in Als Als)。基因遗传力的研究(7-9)表明,与ALS相关的除草剂耐药性由具有可变程度的优势程度的核基因控制。网站http://www.weedscience.org呈现了根据每个AAS对ALS抑制剂获得的抗性除草剂杂草获得的阻力模式的更新记录[1]。
瞄准者:本指南主要是为临床医生提供的教育资源,以帮助他们提供优质的医疗服务,不应将其包括在内的所有适当的程序和测试,或不包括其他程序和测试,这些程序和测试可合理地指导获得相同的结果。遵守本指南并不一定能确保成功的医疗结果。在确定任何特定程序或测试的适当性时,临床医生应将其自己的专业判断应用于个别患者或标本所呈现的特定临床情况。临床医生被鼓励记录使用特定程序或测试的原因,无论它是否符合本指南。还建议临床医生注意通过该指南的日期,并考虑在该日期之后可用的其他医学和科学信息。©美国医学遗传学学院,2009年(部分通过MCHB/HRSA/HHS授予#U22MC03957)
2。倒重复的palindrome也是一个向前和向后读取相同的序列,但是向前和向后的序列在互补的DNA链(即双链DNA)中发现,与GTATAC(GTATAC)(GTATAC是catatg互补的)。倒重复的回信更为普遍,并且比镜面的plindromes更为普遍,并且具有更大的生物学意义。
ASCVD,动脉粥样硬化心血管疾病; CKD,慢性肾脏疾病; CVD,心血管疾病; DKA,糖尿病性酮症酸中毒; GIP,葡萄糖依赖性胰岛素多肽;胃肠道,胃肠道; GLP-1,胰高血糖素样肽-1; HF,心力衰竭; HFPEF,心力衰竭,保留射血分数;我,抑制剂; RA,受体激动剂; SGLT2,钠 - 葡萄糖共转运蛋白2; su,磺酰脲; tzd,噻唑烷二酮。
摘要 木质素是位于细胞壁的芳香族聚合物,可为木质组织提供强度和疏水性。木质素单体通过苯丙烷途径合成,其中咖啡酰莽草酸酯酶 (CSE) 将咖啡酰莽草酸转化为咖啡酸。在这里,我们探讨了两种 CSE 同源物在杨树 (Populus tremula 9 P. alba) 中的作用。报告系显示 CSE1 和 CSE2 启动子赋予的表达相似。CRISPR-Cas9 产生的 cse1 和 cse2 单突变体具有野生型木质素水平。尽管如此,CSE1 和 CSE2 并非完全冗余,因为两个单突变体都积累了咖啡酰莽草酸。相比之下,cse1 cse2 双突变体的木质素减少了 35%,并导致相关的生长损失。降低木质素含量意味着在糖化程度有限的情况下,纤维素转化为葡萄糖的转化率增加了四倍。双突变体的酚类分析显示,代谢变化很大,除了咖啡酰莽草酸外,还包括对香豆酰、5-羟基阿魏酰、阿魏酰和芥子酰莽草酸的积累。这表明 CSE 具有广泛的底物特异性,这已通过体外酶动力学得到证实。总之,我们的结果表明,在羟基肉桂酰-莽草酸水平上,苯丙烷类途径中存在一条替代途径,并表明 CSE 是改善生物精炼植物的有希望的目标。
常用的电解质溶液包括六氟磷酸钠(NaPF6)、高氯酸钠(NaClO4)、六氟砷酸钠(NaAsF6)、四氟硼酸钠(NaBF4)、二氟草酸硼酸钠(NaBOB)等,有机溶剂一般为烷基碳酸酯化合物。13,14电解液同时影响SIBs的电化学性能和安全性,它不仅决定了电池的电化学窗口和能量密度,还控制着电极/电解液界面的性能。15,16电解液复杂的电化学副反应和金属钠枝晶的形成在一定程度上限制了SIBs的发展。目前,对SIBs电解质的研究主要集中在新型电解质盐、溶剂改性及混合、新型添加剂等方面。一系列新型钠盐,如二氟乙酸钠磺酰亚胺钠(NaFSI)、三氟甲基磺酰亚胺钠(NaTFSI)、二氟乙酸钠硼酸盐(NaODFB)等已被证明是潜在的替代品。17 – 19与传统碳酸酯溶剂相比,醚类溶剂可作为SIBs电解质的替代品。20此外,腈类、氟化溶剂、羧酸盐溶剂、离子液体也可作为候选溶剂。特别是新型添加剂由于其优异的成膜性能、高低温稳定性、快速充电能力,近年来成为研究重点。 21,22 在 SIB 中,成膜组分 NaF 在反应过程中相对容易溶解,导致电极界面不稳定。23 通常,不稳定的电解质界面
在这项随机的,务实的务实试验中,DPP-4抑制剂,GLP-1受体激动剂,SGLT2抑制剂和磺酰鲁鲁斯的四路比较支持新糖尿病药物的潜在心血管益处与GLP-1 RAS和SGLT2 IN抑制剂之间的潜在心血管益处。为了模仿一项随机对照试验,该研究使用美国退伍军人事务部数据库来识别患有2型糖尿病的人,有或没有心血管疾病,他们在研究基准处开了二甲双胍单一疗法,他们是在2016年10月至9月2021年10月之间在四个药品类别中启动的一项。平均遵循3。85年的队列。重大不良心血管事件的发生率(MACE:心肌梗死,中风和全因死亡率)在GLP-1 RA或SGLT2抑制剂上启动的率相似,而接受这些药物类别的人的风险低于接受DPP-4抑制剂或硫磺酶的风险。此外,接受DPP-4抑制剂的人比接受磺酰氟烷的人具有更低的MACE风险。尽管随机对照试验可用于证明药物疗法的安全性和功效,但它们招募了2型糖尿病患者的受限制人群,因此,他们的结果很难概括为我们的“现实世界”人群。务实的现实世界中的试验(例如,更好地代表日常临床实践的可能结果),尽管这种研究不能排除混淆。这些发现提供了现实世界中最常用的二线降糖类别的比较有效性的现实证据,并可以帮助指导我们选择降糖剂的选择。现在,当GLP-1 RAS短缺要求我们将高心血管风险的人转换为其他葡萄糖降低疗法时,这是特别有用的。
