有机涂层的耐用性提高可以部分解决金属腐蚀的重要问题。出于这个原因,这项工作试图在吉他上使用粉末有机涂层(尤其是钙离子交换的二氧化硅微粒)后生产粉末有机涂层。目的是获得具有更好耐腐蚀性的高性能涂料,并使其对磨蚀性和侵蚀性磨损具有更大的抵抗力,以减少暴露期间遭受损害的可能性。原始环氧涂层和涂料具有不同的特性,具有两个不同百分比的钙离子交换二氧化硅抑制剂(1和2%的wt。)进行了分析。在执行受控机械损伤后评估了新有机涂层的腐蚀保护。使用扫描开尔文探针(SKP)测量每种涂层所遭受的分层,在添加3.5%的NaCl下降后,持续了26天。此外,还研究了所有有机涂层的抗刮擦性,通用硬度和耐磨性(滑动和侵蚀性),以评估添加剂对其机械性能的影响。这项工作中获得的结果表明,这些抑制剂的少量添加能够从缺陷中降低涂层的分层速率,并在浸入NaCl溶液中后改善了刮擦测试的结果。此外,在环氧树脂中添加2%二氧化硅颗粒改善涂层的侵蚀性和滑动磨损性能。
原子和分子光谱法:光谱概论,原子吸收原理,火焰发射分光光度计和ICP-AE(电感性耦合等离子体 - 原子 - 原子发射光谱),通过校准方法的定量,Jablonski图和荧光,杂物和磷酸化法和princlosisclies and princlosisce and Principers and Principers and Principers and-Loctiati光谱法。电化学:电化学,离子移动性,导电滴定,现代电池的背景:PB-ACID和LI ION电池,腐蚀及其保护。水处理和分析:水质的生理化学参数,水软化的外部和内部方法:碳酸盐,磷酸盐,磷酸盐,卡尔贡和胶体调节,沸石工艺,离子交换过程,用于家用的水的处理,用于家用的水,脱水的咸水:反向渗透和电力。燃料:燃料,热量价值,叶烷和辛烷值的分类,替代燃料:生物柴油,供电酒精,合成汽油,燃料电池:H2生产和储存,水分裂,火箭推进剂。聚合物的化学:聚合物的分类,聚合物的策略,分子量计算,日常生活中的聚合物,进行,无机和可生物降解的聚合物。化学中的计算机:微笑简介(简化的分子输入线 - 输入系统):方法和编码规则,微笑符号符号化学结构互换及其应用。实验室工作
) 被用作药物递送系统 (DDS) 中的基质。根据 TMAMA 单元中的反离子类型,它们被分为单药物系统和双药物系统,前者表现为具有氯反离子并负载异烟肼 (ISO) 的离子聚合物,后者的特点是 ISO 负载于自组装 PAS 结合物中。通过测定临界胶束浓度 (CMC) 证实了这些共聚物的两亲性质,显示离子交换后数值增加(从 0.011–0.063 mg/mL 至 0.027–0.181 mg/mL)。自组装特性有利于 ISO 包封,单系统和双系统中的药物负载量 (DLC) 都在 15% 到 85% 之间。体外研究表明 ISO 释放百分比在 16% 到 61% 之间,PAS 释放百分比在 20% 到 98% 之间。采用2,5-二苯基-2H-溴化四唑(MTT)试验进行的基本细胞毒性评估,证实了所研究的系统对人类非致瘤性肺上皮细胞株(BEAS-2B)无毒性,尤其是在同时含有ISO和PAS的双系统的情况下。这些结果证实了聚合物载体在药物递送中的有效性,并展示了其在联合治疗中用于药物递送的潜力。
关于湖泊资源NL(ASX:LKE OTC:LLKKF)使用有效的破坏性清洁技术清洁高纯度锂 - 电动汽车制造商和锂离子电池的需求。Lake Resources NL(ASX:LKE,OTC:LLKKF)是一位干净的锂开发商,利用其最先进的IOR-ART离子交换技术来生产其在Argentina的Catamarca省在Catamarca Province的旗舰Kachi Project的可持续性,高纯净锂,在Argentina的其他三个项目中,涵盖了220,000 Ha Ha Ha。这种离子交换提取技术为两个不断上升的需求提供了解决方案 - 高纯度电池材料,以避免性能问题,更可持续的,负责任的材料具有低碳足迹和显着的ESG收益。前瞻性陈述:本公告中包含的某些陈述,包括有关项目未来财务绩效的信息,是前瞻性陈述。这种前瞻性陈述必然基于许多估计和假设,尽管湖泊资源合理,但n.l。湖泊资源N.L. 违反任何意图或义务,以更新任何前瞻性语句,无论是由于新信息,未来事件或结果还是其他方式。 “相信”,“期望”,“预期”,“指示”,“思考”,“目标”,“计划”,“打算”,“继续”,“继续”,“预算”,“估计”,“估计”,“五月”,“意志”,“时间表”,“时间表”,“时间表”和类似的表达方式确定了前瞻性陈述。 本公告中发表的所有前瞻性陈述均由上述警示陈述符合条件。湖泊资源N.L.违反任何意图或义务,以更新任何前瞻性语句,无论是由于新信息,未来事件或结果还是其他方式。“相信”,“期望”,“预期”,“指示”,“思考”,“目标”,“计划”,“打算”,“继续”,“继续”,“预算”,“估计”,“估计”,“五月”,“意志”,“时间表”,“时间表”,“时间表”和类似的表达方式确定了前瞻性陈述。本公告中发表的所有前瞻性陈述均由上述警示陈述符合条件。固有地受到重要的技术,商业,经济,竞争,政治和社会不确定性和意外事件的约束;涉及已知和未知的风险,不确定性以及其他可能导致实际事件或结果与估计或预期的事件或结果(表示或暗示的结果)的因素,反映在此类前瞻性陈述中;并可能包括有关目标,估计和价格,运营成本和结果的陈述,资本支出,储量和资源以及预期的流速,并且是基于与未来的技术,经济,市场,政治,社会和其他条件相关的假设和估计的基础,并且可能会因政府的进一步发展而限制,以便对政治,政治范围的发展以及对政治的进一步变化的风险,以便对政治的发展范围造成的融合,以致是在政治上的发展,以致,旨在融合,旨在融合。湖的项目。投资者被告知,前瞻性陈述不能保证未来的绩效,因此,由于其中固有的不确定性,投资者被告知不要过分依赖前瞻性陈述。Lake不承诺更新任何前瞻性信息,但根据适用的证券法。
多糖和蛋白质等天然聚合物被广泛用作制造先进材料的基质[1-4]。在众多的天然聚合物中,细菌纳米纤维素 (BNC)、纤维素纳米纤维 (CNF) 和纤维素纳米晶体 (CNC)(即纤维素的三种纳米形式)目前在现代科学和技术领域备受关注[5-7]。这些纳米级纤维素基质的环保性质、独特性能和多种功能正在被研究,以设计先进的纳米复合材料和纳米杂化材料,应用于力学、光学、电子、能源、环境、生物和医学等众多领域。纳米材料特刊的标题为“先进的纳米纤维素基材料:生产、特性和应用”,汇集了来自世界顶尖科学家研究纳米纤维素的原创研究和评论文章。因此,本期特刊收集了一篇关于纤维素纳米材料表征的评论论文 [8] 和八篇研究论文,重点关注 BNC [9-11]、CNF [12-15] 和 CNC [16] 用作复合材料的增强材料 [13-15] 以及生产燃料电池的离子交换膜 [9]、组织工程和伤口愈合的贴片 [10, 11] 以及用于癌症治疗的纳米系统或纳米载体 [15, 16]。在题为“纳米级红外光谱表征纤维素纳米材料的最新进展”的论文中,Zhu 等人。 [ 8 ] 综述了当前最先进的纳米级红外光谱和成像技术,即基于原子力显微镜的红外光谱 (AFM-IR) 和红外散射扫描近场光学显微镜 (IR s-SNOM),在表征纤维素纳米材料方面的应用最新进展。作者指出,AFM-IR 和 IR s-SNOM 是两种用于纳米级空间分辨率成分分析和化学映射的技术,还可以提供有关纤维素纳米材料的机械、热和电性能的深刻信息 [ 8 ]。Vilela 等人的研究。 [9] 证明了将 BNC(即微生物胞外多糖)与水溶性阴离子磺化木质素衍生物(即木质素磺酸盐)和天然交联剂(即单宁酸)结合起来生产具有良好机械性能(最大杨氏模量约 8.2 GPa)和吸湿能力(48 小时后约 78%)和最大离子电导率为 23 mS cm−1(在 94 ◦ C 和 98% 相对湿度下)的独立均质膜的可行性。尽管所实现的电导率值与文献中报道的其他全生物基离子交换膜相当或更高,但它们仍然比目前燃料电池中使用的标准商用 NafionTM 离聚物低两个数量级。尽管如此,作者认为,这项研究可能有助于开发环境友好型导电隔膜的漫长而艰辛的道路,特别是通过利用农业和工业副产品的剩余原材料 [ 9 ]。Kutov á 等人的研究也同样有趣。[ 10 ] 研究了干燥方法(风干或冷冻干燥)和随后的氩等离子体改性对导电隔膜的影响。
掺杂是提升各种有机电子器件性能的重要策略。然而,在许多情况下,共轭聚合物中掺杂剂的随机分布会导致聚合物微结构的破坏,严重限制了电子器件的可实现性能。本文表明,通过离子交换掺杂聚噻吩基 P[(3HT) 1-x -stat-(T) x ](x = 0(P1)、0.12(P2)、0.24(P3)和 0.36(P4)),无规共聚物 P3 实现了 > 400 S cm − 1 的极高电导率和 > 16 μ W m − 1 K − 2 的功率因数,使其成为有史以来报道的基于未排列的 P3HT 薄膜中最高的电导率之一,明显高于 P1(< 40 S cm − 1 、< 4 μ W m − 1 K − 2)。尽管两种聚合物在原始状态下都表现出相当的场效应晶体管空穴迁移率≈0.1 cm 2 V − 1 s − 1,但掺杂后,霍尔效应测量表明 P3 表现出高达 1.2 cm 2 V − 1 s − 1 的霍尔迁移率,明显优于 P1(0.06 cm 2 V − 1 s − 1)。GIWAXS 测量确定掺杂 P3 的平面内𝝅 – 𝝅堆叠距离为 3.44 Å,明显短于掺杂 P1(3.68 Å)。这些发现有助于解决 P3HT 中长期存在的掺杂剂诱导无序问题,并作为在高掺杂聚合物中实现快速电荷传输以实现高效电子器件的典范。
MEVD – 301(A) 光电子集成电路 第一单元光波导理论:波导理论:一维平面波导、二维波导、超越方程、波导模式、模式截止条件。 第二单元光波导制造和特性:波导制造:沉积薄膜;真空沉积和溶液沉积、扩散波导、离子交换和离子注入波导、III-V 化合物半导体材料的外延生长、通过湿法和干法蚀刻技术塑造波导。波导特性:表面散射和吸收损耗、辐射和弯曲损耗、波导损耗测量、波导轮廓分析。 第三单元光耦合基础:横向耦合器。棱镜耦合器。光栅耦合器。光纤到波导耦合器。光波导之间的耦合。定向耦合器。定向耦合器的应用。单元 IV 导波调制器和开关:光调制器中使用的物理效应:电光效应、声光效应和磁光效应。波导调制器和开关。单元 V 半导体激光器和探测器:激光二极管。分布式反馈激光器。集成光学探测器。单元 VI 集成光学的最新进展:导波设备和应用的最新技术,例如光子开关、可调谐激光二极管、光学集成电路。文本/参考文献 1. T Tamir,《导波光电子学》,Springer-Verlag,1990 年 2. R Sysm 和 J Cozens,《光导波和设备》,McGraw-Hill,1993 年
牛奶蛋白发挥各种营养,功能和生物学活性。许多牛奶蛋白具有特定的生物学特性,这些特性使这些成分的促进食品的潜在成分。越来越多的注意力集中在源自牛奶蛋白的生理活性肽上。这些肽在父蛋白分子的序列内无活性,可以通过(1)牛奶的胃肠道消化释放,(2)用蛋白水解启动培养物或(3)蛋白水解酶进行水解牛奶。牛奶蛋白衍生的肽已在体内显示出影响各种影响,例如消化,心血管,免疫和神经系统。研究已经确定了主要牛奶蛋白中特定生物活性的大量肽序列,并确定了其释放的条件。最近开发并推出了适合生物活性牛奶肽商业生产的工业规模技术。这些技术基于新兴乳制品成分行业采用的新型膜分离和离子交换色谱方法。在发酵乳制品中发现了各种自然形成的生物活性肽,例如酸奶,酸奶和奶酪。然而,尚未确定这些传统产品中归因于这些传统产品中肽的健康益处。另一方面,已经有几种商业乳制品补充了牛奶蛋白来源的生物活性肽,其健康对健康有益于临床人类研究。可以预见,随着关于牛奶肽的多功能特性和生理功能的更多知识,这种趋势将扩大。r 2005 Elsevier Ltd.保留所有权利。
本评论文章全面探讨了化学工程领域中电透析技术的重大进步,并提出了整体概述,涵盖了基本原理,膜材料和制造技术,操作参数以及广泛的应用。与以前的研究经常将重点缩小到ED的特定方面不同,这项工作综合了全球进步,弥合了各种研究主题之间的差距,以提供对当前趋势和未来方向的一致理解。是由电势驱动的一种基于膜的分离过程,对于其在水纯化,淡化,资源回收等方面的应用至关重要。本评论深入研究了离子交换膜的演变,突出了材料的创新,以及提高膜选择性和效率的制造技术的进步。它还仔细检查了操作参数对ED系统性能的影响,解决了离子泄漏,膜结垢以及选择性和电导率之间的平衡等挑战。讨论了过程强化和系统优化策略,揭示了最近的发展如何促进能源效率,可伸缩性和可持续性。审查进一步扩展到从环境管理到能源和水透明产业的领域的ED的新兴应用,并由证明实际实施的案例研究强调。通过这种全球视角,它旨在促进ED在应对一些最紧迫的挑战时的进一步探索和应用。最终,本文强调了ED技术的发展所需的多学科方法,这提出了未来研究的途径,以优先考虑环境影响,经济可行性和技术创新。
在2023年,Ionomr完成了一轮融资,其中包括代表氢生态系统的行业参与者的财政支持,强调了Ionomr如何为客户及其系统用户提供竞争优势。关于CleanTech GroupCleanTech®集团是全球清洁技术创新的领先权威。自2002年以来,我们的研究帮助公司,公共部门,投资者和其他人,识别,评估和参与与世界庞大,不断增长,环境和气候挑战相关的创新解决方案和机遇。通过我们的研究,咨询和事件,我们的见解和专业知识可将世界各地的客户提供给全世界的客户。关于Ionomr创新,Ionomr创新正在用新开发的离子交换膜和清洁能源聚合物彻底改变电化学。ionomr'sPemion®和Aemion®技术为燃料电池,氢生产和碳捕获,使用和转换提供了成本,性能和可持续性优势。在Ionomr Simon Fraser University开发的技术中,IONOMR成立于2018年,并在加拿大温哥华和美国罗切斯特雇用了51名专业人士。 有关Ionomr如何帮助促进清洁能源经济的更多信息,请访问www.ionomr.com。在Ionomr Simon Fraser University开发的技术中,IONOMR成立于2018年,并在加拿大温哥华和美国罗切斯特雇用了51名专业人士。有关Ionomr如何帮助促进清洁能源经济的更多信息,请访问www.ionomr.com。