▪最初提出的2014年提议▪使用离子传输,径向模式操作和光子互连的组合实现ND连通性▪强度:光子是可传输的,潜在的通用量子,所有原始人都证明了所有原始人,“模块化”;更快的早期缩放▪弱点:缺乏光子互连
摘要 利用拉曼光谱、差示扫描量热法、温度调制差示扫描量热法、介电光谱和流变学研究了将液体电解质限制在聚合物基质中的影响。聚合物基质由热固化乙氧基化双酚 A 二甲基丙烯酸酯获得,而液体电解质由基于乙基咪唑阳离子 [C 2 HIm] 和双(三氟甲烷磺酰基)酰亚胺 [TFSI] 阴离子的质子离子液体组成,掺杂有 LiTFSI 盐。我们报告称,受限液相表现出以下特征:(i)结晶度明显降低;(ii)弛豫时间分布更宽;(iii)介电强度降低;(iv)在液体到玻璃化转变温度 (T g ) 下协同长度尺度降低;和 (v)局部 T g 相关离子动力学加速。后者表明两个纳米相之间的界面相互作用较弱,而几何限制效应较强,这决定了离子动力学和耦合的结构弛豫,从而使 T g 降低约 4 K。我们还发现,在室温下,结构电解质的离子电导率达到 0.13 mS/cm,比相应的本体电解质低十倍。三种移动离子(Im +、TFSI - 和 Li +)对测量的离子电导率有贡献,从而隐性降低了 Li + 的迁移数。此外,我们报告称,所研究的固体聚合物电解质表现出将机械载荷转移到结构电池中的碳纤维所需的剪切模量。基于这些发现,我们得出结论,优化的
通过开放式细胞设计,阴极与空气的必要连接与开发挑战有关。首先,Li金属是用水爆炸性反应性的,因此需要非水电。此外,还需要通过阳极侧的空气渗透性但无水电解质来避免湿度。因此,大多数研究都是在完全非水系统上进行的,其中有机电解质在阳极和阴极侧使用。但是,有机元素会面临自己的挑战。由于大多数气体扩散电极(GDE)是针对与聚氟乙烯(PTFE)的水基电解质优化的,因为无氧/疏水性粘合剂是必需有机电解质与这些GDE相互作用的理解。多孔系统内部的未润湿区域对于提供多个三相接触点至关重要,其中存在气体,电解质和活性材料。液体用薄膜覆盖活性区域,以确保离子传输到活跃部位,而未耶和华的区域则确保适当的气体传输到活跃区域。图1显示了PTFE附近的水基电解质膜的示意图,以及电流密度如何与电极表面上的液体膜厚度相关。在PTFE附近,仅形成薄薄的液体膜,阻碍了离子传输(橙色区域)。在另一侧,带有厚电解质层,甚至被淹没的孔氧气向活性侧的扩散受到长的扩散路径(黄色区域)的阻碍。液体中缓慢的氧扩散导致浓度增加电势。在这两个区域之间,离子传输和氧扩散长度之间的最佳平衡得出的最大电流密度(绿色区域)。如果使用具有优质润湿特性的电子,则绿色区域中的三相区域将减少,并且多孔系统表现出较低的电化学性能。实际上是完全洪水的电极,几乎所有活性位点都覆盖着液体的较低性能。[2]此问题尤其是针对低表面张力的有机液体。[3] Wagner等人研究了缓慢增加电解质渗透的影响。对于碱性燃料电池,他们观察到PTFE的分解,因此在多孔系统内部疏水区域丧失。这减少了三相边界的厚度,在5000 h
通过开放式电池设计将阴极与空气连接起来的必要性与开发挑战有关。首先,锂金属与水反应剧烈,因此需要非水电解质。此外,需要通过透气但防水的膜和阳极侧的无水电解质来避免潮湿。因此,大多数研究都是在完全非水系统上进行的,其中有机电解质用于阳极和阴极侧。然而,有机电解质面临着自身的挑战。由于大多数气体扩散电极 (GDE) 针对水基电解质进行了优化,并使用聚四氟乙烯 (PTFE) 作为非润湿/疏水粘合剂,因此了解有机电解质如何与这些 GDE 相互作用是必要的。多孔系统内的非润湿区域对于提供存在气体、电解质和活性材料的多个三相接触点至关重要。液体用薄膜覆盖活性区域,确保离子传输到活性位点,而非润湿区域确保气体正确传输到活性区域。图 1 显示了 PTFE 附近的水基电解质膜的示意图,以及电流密度与电极表面液膜厚度之间的关系。在 PTFE 附近,仅形成一层薄液膜,阻碍了离子传输(橙色区域)。在电解质层较厚或孔隙被淹没的另一侧,氧气向活性侧的扩散受到长扩散路径的阻碍(黄色区域)。液体中氧气扩散缓慢会导致浓度过电位增加。在这两个区域之间,离子传输和氧气扩散长度之间的最佳平衡可产生最大电流密度(绿色区域)。如果使用具有优异润湿性能的电解质,则绿色区域中的三相区域会减少,多孔系统的电化学性能会降低。最终,完全淹没的电极(几乎所有活性位点都被液体覆盖)会导致性能不佳。[2] 此问题尤其会出现在表面张力低的有机液体中。[3] Wagner 等人研究了缓慢增加电解质渗透的影响。对于碱性燃料电池,他们观察到 PTFE 分解,因此多孔系统内部疏水区域会损失。这降低了三相边界的厚度,5000 小时后电化学性能损失 12-15%
选择性离子分离对水净化、储能和环境修复等各种行业都至关重要。在新兴技术中,氧化石墨烯 (GO) 功能化膜因其独特的结构和性能而表现出色且意义重大。GO 是石墨烯的衍生物,其表面具有含氧官能团,可用于控制离子传输并增强选择性。本文探讨了 GO 功能化膜在离子分离中的开发和应用,重点介绍了它们的优势、挑战和未来研究方向。
图1:电池材料中探索的相关尺度和配置的示意图。用灰色箭头,即密度功能理论(DFT)和分子动力学(MD)模拟来指示用于计算各个长度尺度中离子传输特性的方法。用于直接探测离子运输的实验技术还与相应的长度尺度对齐。6,该图显示了从原子到中尺度到中尺度的各种尺度范围,以及在电池中发生的相应配置。以这种方式研究电池材料将导致提高未来电池的性能特征。
水凝胶具有可调的物理化学特性,为增强ZIB的离子传输提供了一种多功能平台。通过系统地采用不同种类的水凝胶(例如透明质酸,Zwitterionic聚合物,聚电解质和基于纤维素的水凝胶),我们旨在阐明不同水凝胶的影响,它们的结构,孔隙率和电荷密度对离子扩散的Kinetics和整体电池电池均可表现。预计将基于水凝胶的电解质掺入会减轻诸如锌树突形成,氢进化和电解质耗竭等问题,从而改善循环稳定性,整体性能和安全性。
电池101在1980年代开发,并获得2019年诺贝尔化学奖的认可,锂离子电池已成为世界上最常用的电池之一。它为大多数手机和笔记本电脑提供动力,并且驱动了电动汽车生产的激增。与大多数电池一样,锂离子电池由三个主要组件组成:正电极(阴极),负电极(阳极)和两个之间的离子传输介质(电解质)。对于每个组件使用的材料都有多种选择,但是最常见的设计具有石墨制成的阳极(碳);由含锂的金属氧化物制成的阴极,例如氧化锂或锰氧化锂;以及结合锂盐和有机溶剂的电解质。
本次冬季学校涵盖的主题包括过渡金属氧化物的化学和物理及其功能特性、材料的高压、化学和拓扑化学合成方法、晶体和磁性中的自旋有序、功能和量子材料、微观结构、纳米级异质结构、能量存储、转换和传输、腐蚀、电池储能材料的电化学、离子传输、催化、多孔固体、金属有机骨架、磁阻、二维材料、飞秒级过程、光谱和各种材料表征技术、量子点、分子磁体、分子电子学、结构和计算生物学、软材料、理论和计算量子化学以及材料科学和计算机模拟。
摘要 真实的核反应截面模型是可靠的重离子传输程序的重要组成部分。此类程序用于载人航天探索任务的风险评估以及离子束治疗剂量计算和治疗计划。因此,在本研究中,GSI-ESA-NASA 合作生成了总核反应截面数据集合。该数据库包括实验测量的总核-核反应截面。Tripathi、Kox、Shen、Kox-Shen 和 Hybrid-Kurotama 模型与收集的数据进行了系统比较。给出了有关模型实施的详细信息。指出了文献中的空白,并考虑了哪些模型最适合与太空辐射防护和重离子治疗最相关的系统的现有数据。