Gkoupidenis 今年秋季开始担任北卡罗来纳州立大学副教授,2014 年在希腊雅典的 NCSR“Demokritos”获得材料科学博士学位。在攻读博士学位期间,他的研究重点是有机电解质的离子传输机制、离子基设备和非挥发性存储器的物理学。获得博士学位后,2015 年,他以博士后研究员的身份加入了法国 EMSE 生物电子系 George Malliaras 团队,他的研究重点是基于电化学概念的有机神经形态设备的设计和开发。2017 年,Paschalis Gkoupidenis 加入马克斯普朗克聚合物研究所,并成为分子电子学系的组长。
锂离子电池 (LIB)、锂硫 (Li-S) 电池和固态碱金属电池等储能系统被视为便携式设备和电动汽车 (EV) 最有前途的电源 (图 1b)。[1] 随着电子设备和电动汽车需求的快速增长,开发具有长循环寿命和高能量密度的下一代电池迫在眉睫。[2] 储能系统的瓶颈包括结构不稳定、氧化还原动力学缓慢以及电子导电性和活性物质的损失,导致循环寿命短和能量密度低。[3] 例如,高容量负极材料在循环过程中会发生高达 400% 的大体积变化,导致结构不稳定以及电子和离子传输退化。[4] 再比如,Li-S 电池的主要问题是硫正极在循环过程中存在不导电和多硫化物溶解的问题,导致容量低
摘要:金属卤化物钙钛矿 (MHP) 将非凡的光电特性与半导体同类产品所不具备的化学和机械特性相结合。例如,它们表现出与单晶砷化镓相当的光电特性,但形成能却接近于零。MHP 的晶格能较小,这意味着它们在接近有机材料的标准条件下经历了丰富多样的多态性。MHP 还表现出与最先进的电池电极一样高的离子传输率。金属卤化物钙钛矿最广泛的应用(例如光伏和固态照明)通常将低形成能、多态性和高离子传输视为应消除的麻烦。在这里,我们通过将这些特性与其他技术相关的半导体进行比较来全面了解这些特性,以强调这种特性组合对于半导体的独特性,并说明如何在新兴应用中利用这些特性。M
与过去的任何时间相比,对新的储能系统的研究变得越来越重要。尤其是,与其他技术相比,由于其高的特异性和能量密度(每单位体积)1,2,改善锂(LI)/钠(Na)离子电池技术的效果被视为最重要。由于电解质是任何电化学设备的关键组合,研究都集中在新电解质的开发上,除了在蝙蝠中具有效率和安全性外,还具有改善的能力。提高电池安全性的一种有效方法是开发具有良好离子传输和健壮机械性能的固体聚合物电解质(SPE)。3 - 5个固态电解质在不易受性,无泄漏问题和良好的机械性能方面有希望,并且它们既可以充当电解质和分离器。固态电解质的不同类别是固体聚合物电解质,凝胶聚合物电解质,内有机电解质和复合材料。尽管有优势,
我们使用密度函数理论模拟的δ-5硼单层作为碱金属(AM)和碱 - 地球金属(AEM)离子电池的阳极材料的电化学性能。探索了Δ-5硼M on洛耶木中各种金属原子(M)的电子特性,吸附,扩散速率和存储行为。我们的研究表明,电子和金属离子传输(0.493-1.117 eV)具有较高的电导率和低激活屏障,表明快速充电/放电速率。此外,发现LI,Na和K的δ-5硼单层的理论能力大于商业石墨的理论能力。AM和AEM的平均开路电压相当低,在0.34-1.30 V的范围内。我们的结果表明,δ-5硼单层单层可能是锂离子和非锂离子可充电电池中有希望的阳极材料。关键字:2D材料;吸附;储能;模拟;扩散简介
本文中的发现表明,智能处理单元(IPU)为Ma-Chine Learning(ML)应用提供了可行的加速器替代方案,该应用程序(ML)应用程序材料和电池研究领域内。我们调查了将模型从GPU迁移到IPU的过程,并探索了几种优化技术,包括管道和梯度积累,旨在增强基于IPU的模型的性能。此外,我们已经有效地将专业模型迁移到了IPU平台。该模型用于预测有效的电导率,这是离子传输过程中至关重要的参数,该参数控制了电池的多电荷和放电周期的性能。该模型利用卷积神经网络(CNN)档案执行预测任务以实现有效的电导率。该模型在IPU上的性能与其在GPU上的执行相当。我们还分析了GraphCore的Bow IPU的利用率和表现。通过基准测试,与其前身Colossus IPU相比,我们观察到Bow IPU的性能显着提高。
图 3. 含 GPE 陶瓷的物理化学性质。 (a) 由 PVDF-HFP 和 Al 2 O 3 纳米粒子通过路易斯酸碱分子间键合形成的准固态聚合物示意图。 (b) GPE 的电解质吸收分析与 A 2 O 3 含量的关系。 经许可复制。 96 版权所有 2020,Wiley-VCH。 (c) 具有钠离子传导路径的复合混合固体电解质 (HSE) 的模型表示。 (d) 离子跳跃和增塑剂离子传输对电导率和 Na 迁移数的贡献图。 (e) 复合固体膜、醚基液体电解质和 HSE 的热重分析 (TGA) 结果。 经许可复制。 98 版权所有 2015,皇家化学学会。 (f) 所得 GPE 薄膜在室温下的离子电导率,通过改变填料含量进行改性。 (g) 离子电导率与温度的关系。 (h)GPE-0 和 GPE-4 薄膜的线性扫描伏安曲线。经许可转载。99 版权所有 2021,爱思唯尔。
过早失败的根本原因,而是电沉积Na的固有固定锚定/根结构,导致可逆性和最终细胞衰竭导致较差的电极底物。锚定的NA沉积物很容易与阳极电流收集器分离,从而产生了大量的孤儿和不良的阳极利用率。我们提出并评估在一系列化学物质中作为Na的底物中的薄金属相间涂层。基于热力学和离子传输考虑因素,预计此类底物将与Na进行可逆的合金反应,并被认为可以促进电沉积Na的良好根生长和高可逆性,而没有详细的形态。在各种选项中,据报道,AU在液体电解质中支持长时间Na阳极寿命和高可逆性(库仑效率> 98%)的令人印象深刻的能力,对于10 nm - 1000 nm的涂料厚度。作为评估阳极实用性实用性的第一步,我们评估了它们在Na || Span细胞中的性能,N:P比接近1:1。
基于碳的超级电容器的能量存储能力取决于电解质离子的吸附或电极和电解质界面上可逆的氧化还原反应的吸附。碳材料中的大量微孔(直径少于2 nm)被认为对于通过提供丰富的可访问的表面积和活性位点而对增加能量密度至关重要。然而,电解质离子不能有效地转运到微孔中的内部孔中,从而导致电极材料的下功率性能。通常认为,中孔(2 - 50 nm),尤其是狭窄的中孔可以提供短的电子和离子传输途径,从而增强了微孔的利用率。13,14此外,大孔(> 50 nm)还可以作为快速的储层,以存储更多的电解质离子。因此,具有丰富合适微孔的孔结构的合理设计,碳材料的宏观和中孔具有很大的显着性cance cance cance cans cans cans and cants and cants cans的能力和速率能力。将杂原子引入碳网络是获得出色电化学
摘要:过渡型三金属硫化物NiCoMn-S因在混合超级电容器中的高比容量而备受关注,而Ti3C2则因具有标志性的二维层状结构和优异的导电性而被视为一种潜在的新型电极材料。本文通过简单的一步水热法将NiCoMn-S纳米颗粒与二维层状Ti3C2复合,首次将其应用于混合超级电容器(HSC)的正极。大量的NiCoMn-S纳米颗粒分布在Ti3C2表面,为氧化还原反应提供了丰富的电化学活性位点。此外,Ti3C2的二维层状结构为离子传输提供了额外的电子通道,并降低了储能过程中的电荷转移阻力。 NiCoMn-S/Ti3C2-3.4%在1 A g-1密度下实现了347.1 C g-1的比容量,比纯NiCoMn-S(1 A g-1时270.2 C g-1)高28%。最后以NiCoMn-S/Ti3C2-3.4%为正极,RGO为负极组装成混合超级电容器(HSC),在1 A g-1密度下实现了164.3 C g-1的比容量,在15 kW kg-1的比功率下实现了16.2 Wh kg-1的高比能量。