基于电池总重量。根据报告的数据计算,Chang 研究小组通过使用内部铆钉实现了 131 Wh kg 1 (包括电池总重量)和 9.6 GPa 的弯曲模量。13然而,制造过程变得更加复杂。其他研究分别实现了 12.8 GPa 21 和 5.7 GPa 22 的拉伸模量,比能分别为 181.5 和 159 Wh kg 1,但仅包括活性电极材料的质量。如果包含其他组件(例如集电器、隔膜、电解质和包装),如此高的比能将显著下降(例如,40% – 60%)。在这项工作中,我们提出了一种准固体聚合物基电解质(QSPE),它具有适用于结构电池的良好结构和电化学性能。它由三官能丙烯酸酯单体和双盐电解质混合物组成,可在55°C的低温下进行热原位聚合。聚合后的电解质具有1.2 mS cm-1的良好离子电导率、176 MPa的弯曲模量和2.7 MPa的强度。因此,它可以有效地将负载从一层转移到另一层,而不会显著损害离子传输(图1A)。此外,这种电解质与NMC532正极和石墨负极都很稳定,因为我们在500次循环中实现了稳定循环,容量保持率为91%。采用这种QSPE和碳纤维织物/环氧复合材料封装,我们实现了显著提高的21.7 GPa的弯曲模量和184 MPa的弯曲强度,以及基于总电池质量的127 Wh kg-1的高比能。机械性能要低得多
在很大程度上,纳米级的流体运输在很大程度上是维珍领土。近年来,碳纳米管中的快速流[1-4]等新现象已经发布,或者在碳纳米管中的特殊离子转运[5],硝酸硼纳米管中的大渗透力[6]或纳米氧化石烯和石墨烯氧化物的高渗透[6] [7-9]。这些现象中的许多现象仍有合理化[10,11]。尽管在理论和数值方面进行了详尽的探索,但仍然缺乏实验输出,因为该领域的研究非常具有挑战性。然而,对纳米通道内流体运输的系统性理解,尤其是某种神秘的碳材料,是获得对纳米级级别发挥作用机制的基本见解的先决条件。的确,这些材料的流体特性对社会问题(如淡化和能量收集)产生了影响,这确实使许多希望寄希望了,因此对于确定其特定行为的物理起源至关重要。在这封信中,我们探索各种尺寸的个体碳纳米管(CNT)内部的离子传输,通常在数十个纳米范围内。,我们尤其将重点放在离子电导率及其对盐浓度的依赖性以及离子电流的波动上。我们报告了低盐浓度下电导的“不寻常”缩放行为,可以用碳表面上的氢氧化物吸附来解释。单个纳米管和实验设置。- 单个跨膜纳米管设备由此外,当前噪声的测量值强调了噪声幅度对表面电荷的密切依赖性,这表明表面吸附在离子传输的低频行为中起关键作用。结果显示,结果与硝酸硼纳米管(BNNT)的响应有很大不同,后者表现出相同的Crys-Salographich,但截然不同。
在高盐土壤和水域中,在这些生态系统中存活的微生物除了限制生存率的任何其他因素外,还必须处理过多的盐。卤素和卤代微生物使用各种策略来维持其细胞膜渗透平衡,并防止细胞质水的损失。在这些策略中,包括蛋白质和RNA/DNA影响的分子水平的修改,盐水适应性,兼容溶质适应性以及盐稳定的细胞表面和膜。由于其生理适应性,卤素/卤代微生物具有巨大的不同应用潜力。研究主题“适应卤素/盐油微生物及其应用”包括有关在各种鱼类中使用盐油和卤素微生物的审查和原始研究文章,包括农业,药物,药物,药品,工业,工业,食物,食品,食品和诸如水分的杂物化处理。卤素和卤素微生物已经开发了多功能分子机制来应对盐分胁迫,许多这些分子适应性在生物技术中都有潜在的应用。在这种情况下,Zhou等人。通过比较基因组分析探索了六型pontixanthobacter和Allopontixanthobacter中盐油耐受性的机制。直接连接到助效的基因包括参与渗透液合成,膜通透性控制,离子传输,细胞内信号传导,多糖生物合成和SOS响应的基因。类似的基因含量先前已在其他细菌中进行了描述,因此增强了这些想法,即这些是解释晕耐的主要机制。作者正在将这些细菌的全基因组共发生,遗传多样性和生理特征联系起来。
位移损伤剂量 (DDD) 是预测在太空环境中使用且会受到辐射的半导体器件寿命的常用指标。DDD 通常根据 Norgett-Robinson-Torrens (NRT) 模型根据非电离能量损失估算,尽管所谓的有效 DDD 的新定义考虑了半导体中非晶化的分子动力学 (MD) 模拟。本研究开发了一个新模型,用于计算碳化硅 (SiC)、砷化铟 (InAs)、砷化镓 (GaAs) 和氮化镓 (GaN) 半导体的常规和有效 DDD 值。该模型是通过扩展粒子和重离子传输代码系统 (PHITS) 中实现的每原子位移计数获得的。这种新方法表明,由于直接撞击造成的非晶化,砷基化合物的有效 DDD 高于传统 DDD,而由于复合缺陷,SiC 的这种关系则相反。对于暴露于质子的 SiC 和 GaN,有效 DDD/传统 DDD 比率随质子能量的增加而降低。相反,对于 InAs 和 GaAs,该比率在质子能量高达 100 MeV 时增加到 1 以上,并且趋于稳定,因为缺陷产生效率(即 MD 模拟的碰撞级联末端稳定位移数量与 NRT 模型计算的缺陷数量之比)在损伤能量值高于 20 keV 时不会增加。通过计算低地球轨道上夹在薄玻璃盖和铝板之间的半导体的有效 DDD 值,证明了该模型的实际应用。结果表明,通过将玻璃盖厚度增加到 200 μ m,可以显著降低有效 DDD,从而证实了屏蔽太空中使用的半导体器件的重要性。这种改进的 PHITS 技术有望通过预测宇宙射线环境中具有复杂几何形状的各种半导体的有效 DDD 值来协助半导体设计。