摘要 - 真实的硬件PLC非常昂贵,有时科学家/工程师无法建立小型测试床并进行实验或学术研究。为此,OpenPLC项目引入了合理的替代选项,并在编程代码,模拟物理过程以及使用低成本设备(例如Raspberry Pi和Arduino uno)中提供了灵感。不幸的是,OpenPLC项目的设计没有任何安全性,即缺乏保护机制,例如加密,授权,反复制算法等。这使攻击者可以完全访问OpenPLC并进行未经授权的更改,例如启动/停止PLC,设置/更新密码,删除/更改用户程序等。在本文中,我们进行了深入的调查,并披露了OpenPLC项目中存在的一些漏洞,表明攻击者既没有对用户凭据,也不对物理过程进行任何先验知识;可以访问关键信息,并有效地更改OpenPLC执行的用户程序。我们所有的实验均在最新版本的OpenPLC(即V3)上进行。我们的实验结果证明,攻击者可能会混淆受感染的OpenPLC控制的物理过程。最后,我们建议OpenPLC创始人和工程师关闭所披露的漏洞并具有更安全的基于OpenPLC的环境的安全建议。索引条款 - OpenPlc;网络攻击;网络安全;控制逻辑注射攻击;
1 Laboratory of Study of Microstructures, Onera-CNRS, University Paris-Saclay, BP 72, 92322 CHECTILLON CEDEX, France 2 University Paris-Saclay, UVSQ, CNRS, GEMAC, 78000, Versailles, France 3 Tim Taylor Department of Chemical Engineering, Kansas State University Manhattan, KS 66506, USA 4 Laboratory of Multimate and Interfaces, UMR CNRS 5615, Univ Lyon University Claude Bernard Lyon 1, F-69622 Villeurbanne, France 5 Laboratory Mateis, UMR CNRS 5510, Univ Lyon, INSA Lyon, F-69621 Villeurbanne, France 6 Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044,日本7电子和光学材料研究中心,国家材料科学研究所,1-1 Namiki,Tsukuba,Tsukuba 305-0044,日本(日期:
摘要:飞秒内的等离激元激发衰减,将非热(通常称为“热”)载体留在后面,可以注入分子结构中,以触发化学反应,而这些反应否则无法达到一个被称为等离子催化的过程。在这封信中,我们证明了谐振器结构和等离子纳米颗粒之间的强耦合可用于控制等离激元激发能与电荷注入能量之间的光谱重叠。我们的原子描述通过辐射反应潜力,将实时密度功能性理论夫妇自搭与电磁谐振器结构。对谐振器的控制提供了一个额外的旋钮,可用于非侵入性的等离激元催化,在这里超过6倍,并动态地反应催化剂的催化剂是现代催化的新方面。关键字:等离激元催化,强光 - 物质耦合,热载体,偏振化学,局部表面等离子体,密度功能理论
摘要:材料平台的进步表现出强大而鲁棒的电形效应对于在开发具有低功耗的高效光电组件中,对于现代光学通信系统而言,具有低功率的高效光电组件至关重要。在这项工作中,我们研究了通过化学溶液沉积技术生长的薄膜铅锆钛酸钛酸钛酸钛酸钛酸盐(PZT)底物,这是片上等离子电元电磁调节剂的潜在平台。使用15μm长的电彩力定向调节器实现高调制深度(> 40%)。观察到约200 kHz的调制频率响应中的异常截止,并在可能的重新定向效应方面进一步研究。第二次谐波产生信号受到外部应用的电场的影响,这表明域的重新定位效应可以造成观察到的异常频率响应。
Mohammad Al Mahfuz 1,2,(成员,IEEE),Sumaiya Afroj 3,探险家Rahman 4,医学博士。Azad Hossain 2,(成员,IEEE),医学博士。Anwar Hossain 5,(IEEE高级成员)和MD Selim Habib 1,(IEEE高级成员)1电气工程和计算机科学系,佛罗里达技术学院,墨尔本,佛罗里达州佛罗里达州佛罗里达州32901,美国2孟加拉国1000号孟加拉国工程技术大学,孟加拉国4电子和电信工程系,拉杰沙希工程大学,拉杰沙希6204,孟加拉国5号电气与电子工程系
摘要:上转换纳米颗粒在现代光子学中至关重要,因为它们能够将红外光转换为可见光。尽管具有重要意义,但它们表现出有限的亮度,这是可以通过将它们与等离子体纳米颗粒结合在一起来解决的关键缺点。等离子体增强的上转换已在干燥的环境中广泛证明,在干燥环境中,向上转换纳米颗粒被固定,但在布朗尼运动与固定化竞争的液体介质中构成了挑战。这项研究采用光学镊子来对单个向上转换纳米颗粒的三维操纵,从而可以探索水中等离子体增强的Upconversion Ploincence。与期望相反,由于金纳米结构的等离子共振,实验显示了上转换发光的远距离(千分尺)和中等(20%)的增强。实验和数值模拟之间的比较证明了布朗运动的关键作用。证明了向上转换纳米颗粒的三维布朗波动如何导致“平均效应”,从而解释了发光增强的幅度和空间扩展。关键字:上转换,等离子体增强,光镊,布朗运动,纳米颗粒
摘要:血清学检验对于控制和管理Covid-19大流行至关重要(诊断和监测,以及流行病学和免疫学研究)。我们引入了一种直接的血清学生物传感器测定,该测定方法采用了基于等离子体学的专有技术,该技术可对严重急性呼吸道综合征2(SARS-COV-2)抗体的快速识别和量化临床样本中的急性急性呼吸综合征2(SARS-COV-2)抗体进行快速(<15分钟)的识别和量化。便携式等离子体设备采用定制设计的多蛋白(RBD肽和N蛋白)传感器生物芯片,并在使用多克隆抗体的低NG ML-1范围内达到检测限。它也采用了WHO批准的抗SARS-COV-2免疫球蛋白标准。具有COVID-19阳性和负样本的临床验证(n = 120)表明其出色的诊断敏感性(99%)和特定的牙齿(100%)。这将我们的生物传感器定位为一种准确且易于使用的诊断工具,用于在实验室和分散环境中使用疾病管理和评估疫苗接种或治疗期间的免疫学状况的快速可靠的Covid-19血清学。
大量能源使用。几乎没有足够的空间来进一步改善电力转换,当需要在白天的可见度时,功耗变得特别高。解决这一问题的能量浪费的解决方案是使用反射性显示,也称为“电子纸”,这仅反映了环境光。这会导致功耗极低,[1]提高了明亮环境中的可见性和潜在的健康益处。[2]最近,出现了一个新的研究方向,重点是对等离子体结构颜色的积极控制[1,3],而电子纸是该领域的一个重要应用。但是,无论是否使用等离子纳米结构,证明其具有与散发性显示的性能相当的电子纸非常困难。[4]广泛的商业设备基于电泳墨水[5](Amazon Kindle等)且颜色模式下的图像质量差,这是通过包含红色,绿色和蓝色(RGB)滤镜的子像素来实现的。[6]此外,慢速开关(≈1s)可防止视频播放 - 将用法限制在电子阅读器和简单标签等应用程序中。电视技术是一种重要的电子纸技术,因为它提供了视频速度,[7],但在商业上仍然无法使用。当电影和闪烁完全消失在≈50hz时,人眼认为> 20 Hz的刷新速率> 20 Hz。通过LCD显示器可以实现如此快速的刷新率,但是在反射构型中,图像可见度[8](绝对反射率<15%)。有机和无机电致色素材料已成为可见光谱区域上高对比度极化独立转换的强大候选者[9],但是它们的响应时间通常太慢了视频显示的速度(对于过渡金属氧化物而言,数百个MS甚至更多)。通常认为,尽管结构颜色对于电致色素设备来说是非常有趣的,但是对于视频应用来说,开关不能足够快,尤其是如果对比度应该很高(≈50%的绝对反射率或传输变化50%)。对于导电聚合物,开关速度的局限性主要归因于在掺杂过程中电解质和聚合物膜中离子相对较慢的“差异”。[10]存在一些例外,例如聚隔离线,已知可以很快地改变质子化状态。[11]
