摘要Bokashi肥料是通过堆肥过程回收有机废物的结果,该过程功能可以改善土壤健康和植物的生产。但是,有机废物的质量和堆肥时间的质量受到使用的有效微生物的类型的影响。这项研究旨在评估从三种有效的微生物(EM4,ECO养殖和MA11)产生的有机废物的过程和质量。根据10、15和20 ml/10 kg的有机废物的重量,堆肥时间为30天,由牛粪,稻壳和麸皮与每种类型的微生物溶液混合的有机废物。pH,温度,颜色,水含量,N-有机,C/N比,C/N比,钾和磷酸盐。结果表明,20 mL MA11提供了更快的堆肥过程,最佳的pH值和C/N比。此外,与其他治疗相比,产生的水含量较低,营养成分增加。最佳数量的MA11的使用将产生高质量的有机废物,并迅速而不会引起其在土壤中的环境问题而不会引起环境问题。
Bascompte,J.,García,M。B.,Ortega,R.,Rezende,E.L。,&Pironon,S。(2019)。相互互动改造气候变化对整个生命树的植物的影响。科学进步,5,EAAV2539。Bond,W。J.(1994)。互助主义重要吗?评估策略和分散器破坏对植物灭绝的影响。伦敦皇家学会的哲学交易。系列B:生物科学,344,83–90。 Botha,P。W.(2017)。 没有鸟类的世界:对构粉鸟类对植物群落的生态意义的实验检验(博士学位论文)。 Stellenbosch大学。 Cahill,A。E.,Aiello-Lammens,M。E.,Fisher-Reid,M.C.,Hua,X.,Karanewsky,C.J.,Ryu,H。Y. B.,Warsi,O。,&Wiens,J。J. (2013)。 气候变化如何导致灭绝? 皇家学会会议录B:生物科学,280,20121890。 克拉克,A。 (1996)。 气候变化对生物体分布和演变的影响。 在I. 中 A. Johnston和A. F. Bennett(编辑。 ),动物和温度:表型和进化适应(卷 59,pp。 375–407)。 剑桥大学出版社。 A.,Wood,S.N.,Wuest,R。O.,&Hartig,F。(2018)。 模型平均生态学:贝叶斯,信息理论和战术方法的回顾。 生态专着,88,485–504。 Geerts,S。(2011)。系列B:生物科学,344,83–90。Botha,P。W.(2017)。 没有鸟类的世界:对构粉鸟类对植物群落的生态意义的实验检验(博士学位论文)。 Stellenbosch大学。 Cahill,A。E.,Aiello-Lammens,M。E.,Fisher-Reid,M.C.,Hua,X.,Karanewsky,C.J.,Ryu,H。Y. B.,Warsi,O。,&Wiens,J。J. (2013)。 气候变化如何导致灭绝? 皇家学会会议录B:生物科学,280,20121890。 克拉克,A。 (1996)。 气候变化对生物体分布和演变的影响。 在I. 中 A. Johnston和A. F. Bennett(编辑。 ),动物和温度:表型和进化适应(卷 59,pp。 375–407)。 剑桥大学出版社。 A.,Wood,S.N.,Wuest,R。O.,&Hartig,F。(2018)。 模型平均生态学:贝叶斯,信息理论和战术方法的回顾。 生态专着,88,485–504。 Geerts,S。(2011)。Botha,P。W.(2017)。没有鸟类的世界:对构粉鸟类对植物群落的生态意义的实验检验(博士学位论文)。Stellenbosch大学。Cahill,A。E.,Aiello-Lammens,M。E.,Fisher-Reid,M.C.,Hua,X.,Karanewsky,C.J.,Ryu,H。Y.B.,Warsi,O。,&Wiens,J。J.(2013)。气候变化如何导致灭绝?皇家学会会议录B:生物科学,280,20121890。克拉克,A。(1996)。气候变化对生物体分布和演变的影响。在I.A. Johnston和A. F. Bennett(编辑。 ),动物和温度:表型和进化适应(卷 59,pp。 375–407)。 剑桥大学出版社。 A.,Wood,S.N.,Wuest,R。O.,&Hartig,F。(2018)。 模型平均生态学:贝叶斯,信息理论和战术方法的回顾。 生态专着,88,485–504。 Geerts,S。(2011)。A. Johnston和A. F. Bennett(编辑。),动物和温度:表型和进化适应(卷59,pp。375–407)。剑桥大学出版社。A.,Wood,S.N.,Wuest,R。O.,&Hartig,F。(2018)。 模型平均生态学:贝叶斯,信息理论和战术方法的回顾。 生态专着,88,485–504。 Geerts,S。(2011)。A.,Wood,S.N.,Wuest,R。O.,&Hartig,F。(2018)。模型平均生态学:贝叶斯,信息理论和战术方法的回顾。生态专着,88,485–504。Geerts,S。(2011)。Dormann,C.,Calabrese,J.,Guillera-Arroita,G.,Matechou,E. B.Dormann,C。F.,Elith,J.,Bacher,S.,Buchmann,C.,Carl,G.,Carré,G.,Marquéz,J.,Gruber,B.,Lafourcade,B.,Leitão,Leitão,p。 J.(2013)。colnearity:对处理IT的方法和评估其性能的模拟研究的综述。coporivy,36,27–4J.,Graham,C.H.,Anderson,R.P.,Dudík,M.,Ferrier,S.,Guisan,A.,Hijmans,R.J.,Huettemann,F.,Leathwick,J.R. a。,Maninon,G.,Moritz,C.,Caure,M.,Cazawa,Yawa,YA,Overton,J.M. S.和Zimmermann,N。E.(2006)。 新颖的方法改善了从动力数据中对物种分布的预测。 生态学,29,129–1 Freeman,B。G.,Scher,M。N.,Ruiz-Gutierrez,V。和Fitzparick,J。W.(2018)。 气候变化会导致热带鸟类社区的上坡变化和山顶。 国家科学院会议录,115,11982–1 <非洲开普敦的鸟类授粉粉的分散和分散(博士学位论文)。 Stellenbosch大学。 Geerts,S。和Adedoja,O。 (2021)。 生物入侵,23,2961–2 (2020)。 (2012)。J.,Graham,C.H.,Anderson,R.P.,Dudík,M.,Ferrier,S.,Guisan,A.,Hijmans,R.J.,Huettemann,F.,Leathwick,J.R.a。,Maninon,G.,Moritz,C.,Caure,M.,Cazawa,Yawa,YA,Overton,J.M. S.和Zimmermann,N。E.(2006)。新颖的方法改善了从动力数据中对物种分布的预测。生态学,29,129–1Freeman,B。G.,Scher,M。N.,Ruiz-Gutierrez,V。和Fitzparick,J。W.(2018)。气候变化会导致热带鸟类社区的上坡变化和山顶。国家科学院会议录,115,11982–1<非洲开普敦的鸟类授粉粉的分散和分散(博士学位论文)。Stellenbosch大学。Geerts,S。和Adedoja,O。(2021)。生物入侵,23,2961–2(2020)。(2012)。授粉和繁殖增强了早期入侵者的侵入性潜力:南非的Lythrum sali-Caria(紫色散落)案例。Geerts,S.,Coetzee,A.,Rebelo,A。G.,&Pauw,A。授粉结构植物和南非角的植物和喂养鸟类群落:对保护植物 - 鸟类共同主义的影响。生态学研究,35,838–856。Geerts,S.,Malherbe,S。D.,&Pauw,A。南非角植物植物中的火花鸟类减少了花蜜喂养鸟类的鲜花。鸟类学杂志,153,297–301。Geerts,S。,&Pauw,A。(2009)。非洲阳光悬停以授粉的蜂鸟 - 授粉植物。Oikos,118,573–579。 Gérard,M.,Vanderplanck,M.,Wood,T。和Michez,D。(2020)。 全球变暖和植物 - 授粉不匹配。 生命科学的新兴主题,第4、77-86页。 Gómez-Ruiz,E。P.和Lacher,T。E.,Jr。(2019)。 气候变化,范围移动以及传粉媒介植物复合物的破坏。 科学报告,9,1-10。Oikos,118,573–579。Gérard,M.,Vanderplanck,M.,Wood,T。和Michez,D。(2020)。 全球变暖和植物 - 授粉不匹配。 生命科学的新兴主题,第4、77-86页。 Gómez-Ruiz,E。P.和Lacher,T。E.,Jr。(2019)。 气候变化,范围移动以及传粉媒介植物复合物的破坏。 科学报告,9,1-10。Gérard,M.,Vanderplanck,M.,Wood,T。和Michez,D。(2020)。全球变暖和植物 - 授粉不匹配。生命科学的新兴主题,第4、77-86页。Gómez-Ruiz,E。P.和Lacher,T。E.,Jr。(2019)。 气候变化,范围移动以及传粉媒介植物复合物的破坏。 科学报告,9,1-10。Gómez-Ruiz,E。P.和Lacher,T。E.,Jr。(2019)。气候变化,范围移动以及传粉媒介植物复合物的破坏。科学报告,9,1-10。
结果表明,Kinnex 16S测序可以在单个Revio SMRT单元格上以1,536-plex或在续集IIE SMRT单元格上的768-plex下的平均读数> 30k平均读数。图5a显示了续集II系统上的常规全长16S库的显示2.1-330万(M)的读取,而Kinnex则显示为19.6-28.4 m,在Revio系统上,从8.5-10.1 m的Revio系统上读取,而没有Kinnex至62.5–72.5–72.2 m读取Kinnex。 此差异允许每个SMRT单元格多路复用和每个样品的读取深度更高。 将Kinnex 16S与标准FL 16S进行比较,我们发现物种组成有很高的相关性(图5B)。 在20种物种的微生物标准上,Kinnex 16S库与预期的物种表示相比,由于读取深度较高,因此与常规16S库相关(图5C)。显示2.1-330万(M)的读取,而Kinnex则显示为19.6-28.4 m,在Revio系统上,从8.5-10.1 m的Revio系统上读取,而没有Kinnex至62.5–72.5–72.2 m读取Kinnex。此差异允许每个SMRT单元格多路复用和每个样品的读取深度更高。将Kinnex 16S与标准FL 16S进行比较,我们发现物种组成有很高的相关性(图5B)。在20种物种的微生物标准上,Kinnex 16S库与预期的物种表示相比,由于读取深度较高,因此与常规16S库相关(图5C)。
1位PISA PISA大学转化研究和新技术系;比萨比桑大学医院2号医学肿瘤学单位; 3罗马萨皮恩扎大学实验医学系; 4威尼托肿瘤学研究所IOV IOV -IRCCS,PADUA; 5 IRCCS基金会国家癌症研究所的医学肿瘤学系; 6医学肿瘤科,综合癌症中心,罗马大学多克林大学基金会Agostino Gemelli Irccs; 7医学肿瘤科,罗马天主教大学的圣心; 8 Ravenna Ausl Romagna的Ravenna医院肿瘤科; 9罗马大学校园Bio-Medico大学医学肿瘤学系; 10医学肿瘤科,IRCCS Romagna肿瘤研究研究所(IRST)“ Dino Amadori”,Meldola; 11临床肿瘤学,临床和分子科学系,马尔马尔市理工大学,托莱特·迪安科纳,安科纳; 12临床肿瘤学,Ancona Marche的医院大学; 13 Cagliari Cagliari大学医院医学肿瘤学; 14 Cagliari Cagliari大学医学肿瘤学; 15都灵大学医学院医学肿瘤学系,Candiolo癌症研究所,FPO,IRCCS,Candiolo,都灵; 16 IRCCS Humanitas Research Hospital,Humanitas Cancer Center,Rozzano,Rozzano,米兰,意大利,医学肿瘤学和血液学部门1位PISA PISA大学转化研究和新技术系;比萨比桑大学医院2号医学肿瘤学单位; 3罗马萨皮恩扎大学实验医学系; 4威尼托肿瘤学研究所IOV IOV -IRCCS,PADUA; 5 IRCCS基金会国家癌症研究所的医学肿瘤学系; 6医学肿瘤科,综合癌症中心,罗马大学多克林大学基金会Agostino Gemelli Irccs; 7医学肿瘤科,罗马天主教大学的圣心; 8 Ravenna Ausl Romagna的Ravenna医院肿瘤科; 9罗马大学校园Bio-Medico大学医学肿瘤学系; 10医学肿瘤科,IRCCS Romagna肿瘤研究研究所(IRST)“ Dino Amadori”,Meldola; 11临床肿瘤学,临床和分子科学系,马尔马尔市理工大学,托莱特·迪安科纳,安科纳; 12临床肿瘤学,Ancona Marche的医院大学; 13 Cagliari Cagliari大学医院医学肿瘤学; 14 Cagliari Cagliari大学医学肿瘤学; 15都灵大学医学院医学肿瘤学系,Candiolo癌症研究所,FPO,IRCCS,Candiolo,都灵; 16 IRCCS Humanitas Research Hospital,Humanitas Cancer Center,Rozzano,Rozzano,米兰,意大利,医学肿瘤学和血液学部门
•计划以主题为主题,例如植物,地理,环境。•计划的编程培养。•多样化,许多属和物种通常被清晰地标记。•出处•设置在边界内,与周围的景观隔壁或分离•专业知识或业余的高水平。•热情,知识渊博和参与的用户组的支持。•提供其他福利,不一定与收藏有关。•高水平的管理和维护。•被视为具有价值,通常会收取收集费用。•被认为是鼓舞人心的卓越中心。
说明:在标有“儿童当前年龄”的栏中查找儿童的年龄。阅读每一种所需疫苗的行。框中的数字是根据儿童当前年龄或年级水平计算出的该疫苗所需的剂量数。栏中的年龄范围并不意味着儿童必须达到该范围内的最高年龄才能达到
真菌鉴定是真菌研究的基础,但传统的分子方法难以在现场快速准确地鉴定,特别是对于近缘物种。为了解决这一挑战,我们引入了一种通用的鉴定方法,称为全基因组分析(AGE)。AGE 包括两个关键步骤:生物信息学分析和实验实践。生物信息学分析在真菌物种基因组内筛选候选靶标序列,称为 Targets,并通过将它们与其他物种的基因组进行比较来确定特定 Targets。然后,使用测序或非测序技术的实验实践将验证生物信息学分析的结果。因此,AGE 为子囊菌门和担子菌门中的 13 个真菌物种中的每一个获得了超过 1,000,000 个合格 Targets。接下来,测序和基因组编辑系统验证了特定 Targets 的超特异性性能;尤其值得注意的是首次展示了来自未注释基因组区域序列的鉴定潜力。此外,通过结合快速等温扩增和硫代磷酸酯修饰引物以及无需仪器的可视化荧光方法,AGE 可以在 30 分钟内通过单管测试实现定性物种鉴定。更重要的是,AGE 在识别近缘物种和区分中药及其掺假物方面具有巨大潜力,尤其是在精确检测污染物方面。总之,AGE 为基于全基因组的真菌物种鉴定的发展打开了大门,同时也为其在植物和动物界的应用提供了指导。
摘要:根际,是与根部分泌物直接接触的狭窄土壤区域,并受到土壤微生物的显着影响,是最近一项研究的重点。这项研究检查了中央邦Vindhyachal森林的菌群,重点是对细菌物种从森林偏远地区的分离和分子鉴定。这些微生物可能在早期疫病的生物学控制中具有潜在的应用,这种疾病通常影响马铃薯和番茄作物。这项研究面临着来自Vindhyachal森林偏远地区细菌物种的分离和分子鉴定的困难,这需要精确地收集和处理土壤和植物根本样品。通过探索这些领域的微生物多样性,目的是确定潜在的生物防治剂,可以为早期疫病提供环保和可持续的解决方案。土壤样品。在十月和11月,也从中央邦的Vindhyachal森林的偏远地区收集了植物根材料,称为根瘤菌。样品连续稀释并在营养琼脂培养基上进行条纹进行细菌分离。通过使用PCR和16S区域的分子分析进一步分析培养的细菌以鉴定。这项开创性的研究阐明了微生物学的复杂世界,揭示了各种细菌菌株在促进植物健康中的关键作用,并保护它们免受有害病原体的影响。所研究的细菌包括荧光菌群,Priestia megaterium,枯草芽孢杆菌和一丝叶片芽孢杆菌。这项研究强调了某些细菌在促进植物健康和保护马铃薯免受病原体(包括早期枯萎病)免受病原体的关键作用。这些细菌可能会导致更可持续的农业实践,并增强我们对植物菌相互作用的理解。
•文献中的许多名称 - 包括“形态学基因”•Dev Gene =任何表达在促进转基因或基因编辑组织的转化或再生(TR)中都有用的基因•从发展和病理学的基本研究中得出的基因•但经常由于自然作用而经常偏离自然作用,因为这些干预措施的一部分是Try的一部分。