多模态异构数据,如结构磁共振成像 (MRI)、正电子发射断层扫描 (PET) 和脑脊液 (CSF),可通过提供有关退化脑部疾病(如阿尔茨海默病前驱期,即轻度认知障碍)的互补信息,有效提高痴呆症自动诊断的性能。有效地整合多模态数据仍然是一个具有挑战性的问题,尤其是当这些异构数据由于数据质量差和患者退出而不完整时。此外,多模态数据通常包含由不同扫描仪或成像协议引起的噪声信息。现有方法通常无法很好地处理这些异构且嘈杂的多模态数据以进行脑痴呆症自动诊断。为此,我们提出了一种高阶拉普拉斯正则化低秩表示方法,使用逐块缺失的多模态数据进行痴呆症诊断。对来自真实阿尔茨海默病神经影像学计划 (ADNI) 队列的 805 名受试者(具有不完整的 MRI、PET 和 CSF 数据)对所提出的方法进行了评估。实验结果表明,与最先进的方法相比,我们的方法在脑疾病分类的三个任务中是有效的。
信息论中的许多问题可以归结为矩阵上的优化,其中矩阵的秩受到约束。我们在秩约束优化和量子纠缠理论之间建立了联系。更准确地说,我们证明了一大类秩约束半定规划可以写成可分离量子态上的凸优化,因此,我们构建了一个完整的半定规划层次来解决原始问题。这个层次不仅为秩约束优化问题提供了一系列经过认证的界限,而且在考虑层次结构的最低层时,在实践中给出了相当好且通常是精确的值。我们证明了我们的方法可以用于量子信息处理中的相关问题,例如纯态优化、混合酉信道和忠实纠缠的表征以及量子语境,以及经典信息论,包括最大割问题、伪布尔优化和图的正交表示。最后,我们表明我们的想法可以扩展到秩约束二次和高阶规划。
摘要 本文介绍了利用量子计算进行参数高效微调 (PEFT) 的 Quantum-PEFT。与其他加性 PEFT 方法(例如低秩自适应 (LoRA))不同,Quantum-PEFT 利用底层的全秩但令人惊讶的参数高效的量子幺正参数化和交替纠缠。使用 Pauli 参数化时,可训练参数的数量仅随环境维度呈对数增长,而不是像基于 LoRA 的 PEFT 方法那样呈线性增长。因此,随着维度的增长,Quantum-PEFT 实现的可训练参数数量比最低秩的 LoRA 少得多,从而提高了参数效率,同时保持了有竞争力的性能。我们将 Quantum-PEFT 应用于语言和视觉中的几个迁移学习基准,显示出参数效率的显著优势。
假设 Alice、Bob 和 Charlie 共享一个三体纯态 | ψ ABC ⟩ 。我们证明,如果 Alice 无法使用 | ψ ABC ⟩ 和局部操作与 Bob 或 Charlie 提取纠缠,并且采用以下任一经典通信配置:( A → B,A ↔ C ),( A ↔ B,A → C )和( A ↔ B,A ↔ C ),则对于其他两种配置也是如此。此外,当状态在系统 AB 和 AC 上的约简都是可分离的时,恰恰会发生这种情况,这进一步等同于约简为 PPT。特别地,这意味着任何 NPT 二分状态都是这样的,状态本身或其补体是双向可提取的。为了证明这些结果,我们首先获得低秩二分态的双向可提取纠缠的明确下限。此外,我们表明,尽管并非所有低秩状态都是单向可提炼的,但随机抽样的低秩状态几乎肯定是单向可提炼的。
图 2 顶部,3D FID-MRSI 重建代谢物体积,具有回顾性加速。完全采样采集(无加速)在 70 分钟内完成,加速因子对应于 k 空间欠采样并相应地减少采集时间(例如 3,24 分钟;6,12 分钟)。彩色图针对从 0 到第 95 个百分位数的每个代谢物范围单独缩放。底部,在所有加速因子下相对于未加速结果为每个代谢物图计算的归一化 RMSE 和 SSIM。显示了来自两个不同位置的样本光谱,它们随加速度(无、3、5)的变化很小。LCModel 拟合与拟合残差一起显示。左下方,整个大脑平均残差的 RMS 随加速度保持不变
图 1:肠道细菌促进 R. prolixus 的免疫启动,抵御细菌感染。(A)在血腔中注射 10 6 CFU 的大肠杆菌、M. luteus 或无菌盐水后,Rpro Axn、Rpro Ec 和 Rpro Rr 的存活曲线。无论使用何种细菌进行攻击,Rpro Rr 和 Rpro Ec 的存活率都明显高于 Rpro Axn(p < 0.0001,对数秩检验),而注射无菌盐水的虫子的存活率没有差异(p 0.15,对数秩检验),这表明肠道微生物的存在在昆虫防御病原体中起着至关重要的作用。当用大肠杆菌进行攻击时,Rpro Rr 和 Rpro Ec 之间的存活率存在显著差异(26.8%)(p = 0.018,对数秩检验)。 Rpro Rr 和 Rpro Ec 之间的存活率差异较小(18%),在受到 M. luteus 攻击时接近但未达到显著性(p = 0.072,对数秩检验)。用不同字母连接的线表示显著不同(p < 0.05,对数秩检验)。(B)Gnotobiotic R. prolixus 限制血腔中大肠杆菌的生长。在 1 和 5 DPI 收集的 R. prolixus 血淋巴中大肠杆菌 CFU 的箱线图。点代表单个虫子。Rpro Rr 虫在 1 和 5 DPI 时的大肠杆菌 CFU 都少于 Rpro Ec 或 Rpro Axn。Rpro Ec 在 1 和 5 DPI 时的大肠杆菌 CFU 都少于 Rpro Axn(** p < 0.002,* p < 0.05,Wilcoxon 检验)。 (C) Rpro Rr 虫的血淋巴比 Rpro Ec 虫或 Rpro Axn 虫更能抑制大肠杆菌和 M. luteus 的体外生长。***p < 0.001,Tukey 的 HSD。
我们在稳定态、稳定秩和高阶傅里叶分析之间建立了联系。高阶傅里叶分析是数学中一个仍在发展的领域,它源于 Gowers 对 Szemer´edi 定理 [10] 的著名傅里叶分析证明。我们观察到 n -量子位元稳定态是所谓的非经典二次相函数(定义在 F np 的拟和子空间上,其中 p 是量子位元的维数),它是高阶傅里叶分析的基本对象。这使我们能够从该理论中引入工具来分析量子态的稳定秩。最近,在 [20] 中证明了 n -量子比特魔法态的稳定秩为 Ω(n)。这里我们证明 n -量子比特魔法态的量子位元类似物具有稳定秩 Ω(n),将其结果推广到任何素数维度的量子位元。我们的证明技术明确使用了高阶傅里叶分析的工具。我们相信这个例子激发了对高阶傅里叶分析在量子信息理论中的应用的进一步探索。
Bini-Capovani-Lotti-Romani (1979) 研究了当矩阵的一个元素设置为零时,是否可以通过五次乘法(而不是简单的 6 次)来计算 M ⟨ 2 ⟩,即这个简化的矩阵乘法张量的秩是否为 5。