所有产权线。 街道、人行道和小巷,包括现有和拟建的路缘坡道。如果要腾出公共区域,请注明。 标明街道、小巷和车道的交通流量。 相邻用途(显示位置并标识)。 建筑物占地面积(包括车库和其他附属建筑)和平方英尺。 其他不透水表面(人行道、甲板、露台等)和平方英尺。 路权内的结构侵占(包括通道、阳台、门摆等)。 尺寸停车位,包括无障碍停车位、电动车停车位和装卸停车位(为该物业服务的所有停车和装卸区)。标明停车和装卸区的设计方式(路缘、车轮挡块等)。 自行车停车位。 显示现有和拟建的灌木和树木(位置、类型、数量和总量)的景观规划。 标明积雪区域或提出除雪计划。 墙壁、屏障和围栏(标明位置、类型和高度)。 机械设备(空调机组、电力变压器、私人或公共设施等) 消防栓、公交站、公共广场、垃圾围栏、公共通行权内的树木。 拟建和现有的照明(位置、类型和大小)。 自然特征和地形。 标明场地和建筑物排水的方向(落水管、屋顶排水管等)。 受干扰面积超过 ½ 英亩的雨水管理计划。 受干扰面积超过 5,000 平方英尺的场地的侵蚀控制计划。 标明北向箭头和绘制计划的日期。
kandivali(东部),孟买,马哈拉施特拉邦,印度摘要:在气候变化和环境转变的背景下,监测北极降水已成为一个关键问题,尤其是在研究不足的地区,在数据稀缺的地区有效预测。本文通过采用先进的机器学习技术,包括随机森林(RF),XGBOOST和LOGISTIS回归提出了一种创新的方法来增强降水预测的准确性。结果表明,逻辑回归达到了98%的最高精度,而随机森林和Xgboost均表现出88%的精度。通过利用包含关键参数的全面数据集,例如日期,云覆盖,阳光,全球辐射,温度指标,降水水平和积雪深度,我们的模型旨在提供及时,精确的预测。该方法将这些机器学习算法整合在一起,以分析和解释气象因素之间的复杂相互作用,最终改善了预测结果。我们的发现表明,与传统方法相比,这种综合方法显着提高了预测准确性,这使其成为偏远北极地区实际应用的可行解决方案。通过促进早期发现和对降水模式的理解,这项研究有助于更好的资源管理,并为应对气候变异性带来的挑战而有助于理解决策,最终旨在减轻弱势弧菌生态系统变化降水动态的影响。关键字:降水预测,气候变化,机器学习,随机森林(RF),XGBoost,Logistic回归,气象数据分析。
摘要。在气候模型中,雪反照率方案一般仅计算窄带或宽带反照率,这导致了显着的不确定性。在这里,我们介绍了基于规格固定的辐射变量(Valhalla 1.0版)的多功能反照率计算方法,以优化光谱雪反照率计算。对于这种操作,积雪吸收的能量是由雪(tartes)和光谱辐照模型的光谱反照率模型的两流射线传递来衡量的。该计算考虑了基于降雪的辐射转移的分析近似,就考虑了入射辐射的光谱特征和雪的操作特性。对于这种方法,计算了30个波长,称为扎点(TPS),并计算16个参考iranciance pro文件,以结合吸收的能量和参考辐照度。然后,将吸收能量的能量插值,每个波长在两个TPS之间具有足够的核函数,这些核函数源自辐射转移,以降雪和大气。我们表明,吸收能量计算的准确性主要取决于参考文献对模拟的辐照度的适应(对于宽带吸收能量的绝对差<1 w m-2的绝对差<1 w m-2,绝对差<0。005用于宽带反照率)。除了准确性和计算时间的性能外,该方法还适用于任何大气输入(宽带,窄带),并且很容易适应整合到全球或区域气候模型的辐射方案中。
我们工作的重点是改善气候模型中异常的解释性,并促进我们对北极熔体动态的理解。北极和南极冰盖正在迅速融化并增加了淡水径流,这显着导致了全球海平面上升。了解在这些地区驱动融雪的机制至关重要。ERA5是极地气候研究中广泛使用的重新分析数据集,可提供广泛的气候变量和全球数据同化。但是,其融雪模型采用了一种能量不平衡的方法,可能会过度简化表面熔体的复杂性。相反,冰川能量和质量平衡(GEMB)模型结合了其他物理过程,例如积雪,FIRN致密化和融化液化/重新冻结,提供了表面熔体动力学的更详细的表示。在这项研究中,我们专注于分析格陵兰冰盖的表面融雪材料,并使用ERA5和GEMB模型中异常熔体事件的特征归因。我们提出了一种新型的无监督归因方法,利用反对解释方法来分析ERA5和GEMB中检测到的异常。我们的异常检测结果通过模仿地面真实数据进行验证,并针对既定的特征排名方法进行了评估,包括XGBoost,Shapley值和随机森林。我们的归因框架标识了每种模型背后的物理和气候特征驱动熔体异常的特征。这些发现证明了我们的归因方法在增强气候模型中异常的解释性并促进我们对北极熔体动力学的理解方面的实用性。
预测服务讨论:一条大气河流将从今天到周末穿过美国西部的北部,带来山谷降雨和山区降雪,积雪高度从加拿大边境附近的 4,000 英尺到内华达山脉和大盆地北部到落基山脉中部的 7,000 至 8,000 英尺。预计下周西海岸将形成高空脊线,下周初至中旬,一个快速移动的系统将向南穿过落基山脉西部和落基山脉,并伴有小雨。该系统还将在周二和周三为南加州带来强劲的圣安娜风,并可能持续到下周晚些时候。对于美国东部来说,今天一场风暴将穿过中大西洋,从阿巴拉契亚山脉中部到中大西洋和新英格兰南部将出现小雪。预计从今天到周末,大湖区下风处也将出现局部大湖效应降雪。在该系统后面,更冷的空气将进入美国东部平原,本周末到下周大部分时间的气温可能低于正常水平。西部的风暴将于本周末晚些时候移至平原地区,然后于下周初移至中大西洋海岸。中部平原地区到俄亥俄河谷和中大西洋地区可能会出现大雪,密西西比河下游和东南部地区将出现降雨。迄今为止冬季最冷的气温可能来自这场风暴后的平原地区、密西西比河谷和东南部。国家预测服务展望 6 分钟安全:当天的 6 分钟安全主题是编写您自己的 6MFS。
1.冰冻圈统称地球系统中含有冻结状态水的元素,包括固体降水、积雪、海冰、湖冰和河冰、冰川、冰盖、冰盖、永久冻土和季节性冻土。冰冻圈是全球性的,存在于所有纬度和大约 100 个国家。认识到对世界冰雪资源过去、现在和未来状况的权威信息的需求日益增长,WMO 大会于 2007 年决定与其他 WMO 计划和国际伙伴组织及计划合作,着手开发全球冰冻圈监测 (GCW)。2011 年,第十六届 WMO 大会决定实施 GCW。2011 年 11 月 21-24 日,全球冰冻圈监视网 (GCW) 首次实施会议在瑞士日内瓦 WMO 总部举行。2.WMO 大会于 2011 年批准的 GCW 实施战略 (IS) 为首次实施会议的讨论奠定了基础。IS 提供了 GCW 背景、用户需求概述、GCW 使命和目标,并提出了 GCW 实施流程,包括建议的初始任务。本次会议旨在吸引参与者并最大限度地发挥现有活动和合作伙伴及其他组织提出的新合作理念的益处,以确定 GCW 的具体方向、任务、服务、产品、贡献和初始管理结构,这将有助于制定 GCW 实施计划。可以通过为会议准备的 GCW 文档计划访问和下载文档和演示文稿(参见:
那些午后,那些慵懒的午后,我常常坐在或躺在荒凉峰上,有时躺在高山草地上,周围是数百英里的积雪覆盖的岩石,北面是赫佐米恩山,南面是巨大的白雪皑皑的杰克山,西面是迷人的湖泊,远处是贝克山的白雪皑皑的山峰,东面是蜿蜒曲折的怪异山脉,一直延伸到卡斯凯德山脊,在那之后,我突然意识到“是我改变了这一切,是我来了又去,抱怨着,伤心着,快乐着,叫喊着,而不是虚空”,所以每次我想到虚空的时候,我都会看着赫佐米恩山(因为椅子、床和草地都面朝北),直到我意识到“赫佐米恩就是虚空——至少在我眼里,赫佐米恩就是虚空”——光秃秃的岩石,尖峰和数千英尺高的突出物从巨大的木肩上伸出一千英尺高的驼背肌肉,我自己的(饥饿)山脊的绿色尖冷杉蛇蠕动着向它爬去,向它可怕的蓝色烟熏岩拱顶爬去,而“希望之云”在加拿大那边懒洋洋地躺着,它们的笑脸、平行的肿块、冷笑、咧嘴、羔羊般的空白、鼻子的鼓起和裂缝的喵喵叫着说:“嗨!大地嗨!”——最顶端最可恶的霍佐米峰是由黑色的岩石构成的,只有当暴风雨来临时我才看不到它们,它们所做的就是以牙还牙,以暴风雨的平静海面为暴风雨的薄雾——霍佐米不会像风中的船舱索具那样破裂,从倒立的角度来看(当我在院子里倒立时),它只是一个悬挂在无边无际中的气泡
一种通过卫星和无线电探空仪的垂直探测预报恶劣天气的统计技术。David L. Keller 和 William L. Smith,1983 年 6 月 (PB84 114099) 北半球积雪的空间和时间分布。Burt J. Morse 和 Chester F. Ropelewski (NWS),1983 年 10 月。(PB84 118348) 使用 NOAA 系列卫星进行火灾探测。Michael Matson、Stanley R. Schneider、Billie Aldridge 和 Barry Satchwell (NWS),1984 年 1 月。(PB84 176890) 使用卫星多通道海面温度图监测 1981-83 年东赤道太平洋的长波。 Richard Legeckis 和 William Pichel,1984 年 4 月。(PB84 190487)NESDIS-SEL Lear 飞机仪表和数据记录系统。Gilbert R. Smith、Kenneth 0. Hayes、JohnS. Knoll 和 RobertS. Koyanagi,1984 年 6 月。(PB84 219674)均匀地球和云表面反射模式图集(NIMBUS-7 ERB--61 天)。V. R. Taylor 和 L. L. Stowe,1984 年 7 月。(PB85 12440)使用卫星数据分析热带气旋强度。Vern F. Dvorak。1984 年 9 月。(PB85 112951)利用 NASA 空间站计划的极地平台进行地球观测。 John H. McElroy 和 Stanley R. Schneider,1984 年 9 月。(PB85 1525027 I AS)NOAA N-ROSS/ERS-1 环境数据开发活动摘要和分析。John W. Sherman III,1985 年 2 月。(PB85 222743/A3)NESDIS 14 NOAA N-ROSS/ERS-1 环境数据开发 (NNEEDD) 活动。John W. Sherman III,
摘要。从太阳到达地球表面的能量量对于气候系统和可再生能源应用非常重要。SARAH-3 (SurfAce Radiation DAtaset Heliosat, https://doi.org/10.5676/EUM_SAF_CM/SARAH/V003, Pfeifroth et al., 2023) is a new version of a satellite- based climate data record of surface solar radiation parameters, generated and distributed by the European Or- ganisation of Meteorological Satellites (Eumetsat)气候监测卫星应用程序(CM SAF)。Sarah-3提供了1983年以来的数据,即超过40年的数据,空间分辨率为0.05°×0.05°,时间分辨率为30分钟,每天和每月的平均值(每月均值为65°W至65°E和65°E和65°S至65°N)。sarah-3由七个参数组成:表面辐照度,直接辐照度,直接辐照度,阳光持续时间,日光,光合作用的活性率和有效的云反照率。Sarah-3 1983年至2020年之间的数据已通过稳定的输入数据生成(即卫星和辅助数据),以确保较高的时间稳定性;这些数据通过操作近实时处理(所谓的临时气候数据记录)在时间上扩展。数据记录适用于从气候监测到可再生能源的各种应用。Sarah-3的验证表现出良好的准确性(偏离约5 W m-2的偏差与每月表面辐照度的表面参考测量值的偏差),数据记录的稳定性以及对其前身SARAH-2.1的进一步改善。这种提高质量的原因之一是对算法中积雪覆盖的表面进行了新的处理,从而减少了雪的错误分类。SARAH-3数据记录显示,近几十年来,欧洲的表面辐照度增加(〜+ 3 w m-2),这与表面观察结果一致。
执行摘要 公共服务部 (DPS) 冰雪控制计划旨在作为辛辛那提市的运营指南。它概述了资源的有效利用,确定了沟通策略,并定义了居民可以预期的服务水平。该计划旨在最大限度地提高服务质量,同时最大限度地减少对环境的影响并提高成本效益。DPS 的目标是尽可能快速、切实地清除辛辛那提道路上的冰雪。这并不意味着路面会光秃秃的,但可以通行。虽然每个冬季风暴的严重程度都无法预测,但 DPS 将继续在其资源范围内努力保持尽可能高水平的客户服务,同时平衡冰雪控制的效率。冰雪控制可占该部门预算的 33% 以上。因此,制定一个精心策划和执行的冬季运营计划是必不可少的。准备工作包括分析上一年的问题和挑战、设备准备情况、人力、应急设备租赁、培训、材料库存和当前技术。 DPS 的交通和道路运营部 (TROD) 负责协调约 3112 车道英里的冬季道路安全。这些车道英里包括主干道、桥梁、立交桥、小街、死胡同和小巷。优先路线由交通量、紧急路线的可达性、公共交通的可达性和学校的可达性决定。除雪优先计划将街道分为 67 条主要路线、97 条住宅路线和 54 条(优先级 3)皮卡车路线。辛辛那提的各个降雪事件的严重程度各不相同。在典型的冬季,辛辛那提平均积雪 20 至 25 英寸,温度为 20°F 及以上。在准备应对冰雪事件时,需要考虑多种因素,包括: