摘要:本文介绍了柔性自动运输系统中工件转运机器人离散操作的控制算法和通信系统,研究了控制站主站综合系统和移动机器人从站控制器之间的信息传输和接收算法。
本文提出了针对非BOLONOMIC车辆的稳定跟踪控制规则。通过使用Liapunov函数来证明该规则的稳定性。对车辆的输入是参考姿势(x,y ,, 8)'和参考速度(v,ar)'。本文的主要目的是提出一个控制规则,以找到合理的目标线性和旋转速度(v,a)'。线性化系统的微分方程对于确定对小干扰的关键倾倒参数很有用。为了避免任何滑倒,引入了速度/加速度限制方案。有或没有速度/加速度限制器的几个合理结果。本文提出的控制规则和限制方法是与机器人无关的,因此可以应用于具有死亡算力能力的各种移动机器人。此方法是在自动移动机器人Yamabico-11上实现的。获得的实验结果接近速度/加速度限制器的结果。
Scitech摘要简介整个网络 - 10月26日 - NOV。 1次适用于移动机器人中国专利新闻的四轮独立悬架系统授予的中国专利赠款|星期五,2024年11月1日
摘要 - 智能机器人技术在维护,维修和大修(MRO)机库操作方面具有重要意义,其中移动机器人可以在其中导航复杂而动态的环境,以进行飞机视觉检查。飞机机库通常忙碌而变化,形状和尺寸各不相同,呈现出严格的障碍物和条件,可能导致潜在的碰撞和安全危害。这使得障碍物检测和避免对安全有效的机器人导航任务至关重要。常规方法已在计算问题上应用,而基于学习的方法的检测准确性受到限制。本文提出了一个基于视觉的导航模型,该模型将预训练的Yolov5对象检测模型集成到机器人操作系统(ROS)导航堆栈中,以优化复杂环境中的障碍物检测和避免。该实验在ROS-Gazebo模拟和Turtlebot3 Waffle-Pi机器人平台中进行了验证和评估。结果表明,机器人可以越来越多地检测并避免障碍物,而无需碰撞,同时通过不同的检查点导航到目标位置。关键字 - 自主导航,对象检测,避免障碍物,移动机器人,深度学习
目的:本文旨在对自主移动机器人(AMR)的能源效率(AMR)的最新技术进行全面分析,重点介绍能源,消费模型,能源效率的运动,硬件能量消耗,路径计划中的优化和调度方法的优化,并建议未来的研究指示。设计/方法/方法:系统文献综述确定了244篇分析论文。从2010年开始发表的研究文章在包括Google Scholar,ScienceDirect和Scopus在内的数据库中搜索,并使用与各种机器人系统中的能源和功率管理有关的关键字和搜索标准进行了搜索。调查结果:评论重点介绍了以下关键发现:1)电池是AMR的主要能源,并且电池管理系统的进步提高了效率; 2)混合模型具有卓越的准确性和鲁棒性; 3)运动占移动机器人总能源消耗的50%以上,强调需要优化的控制方法; 4)诸如质量影响AMR能源消耗之类的因素; 5)路径规划算法和调度方法对于能量优化至关重要,算法选择取决于特定的要求和约束。研究局限性:审查集中于车轮机器人,不包括步行的机器人。未来的工作应改善消费模型,探索优化方法,检查AI/ML角色并评估能源效率的权衡。关键字:自动移动机器人,能源效率,系统文献审查,优化,能源消耗模型,路径计划文章类型:评论独创性/价值:本文对AMR中的能源效率进行了全面的分析,强调了系统文献综述的关键发现,并提出了未来的研究方向,以进一步进步。
•ubuntu(linux)系统的一些经验•一些具有机器人操作系统(ROS/ROS2)的经验•知识是面向对象的编程语言(例如,python,C ++,bash脚本)将是有利的•自我指导且能够在不进行监督的情况下进行,并且有能力进行监督•充满活力和新的项目•愿意与书面沟通•愿意•dival distal•dival dival dival dival dival dival divalsmot地
ez-way EZ-Way®是一种用于控制和导航移动机器人的软件,是一种用于控制和导航移动机器人的软件,可确保流畅有效的操作。确保流畅有效的操作。安装在每台计算机上,它可以保证移动机器人管理,机器人本地化,导航和任务执行。作为开发移动机器人的加速器,EZ-Way®精简并增强了机器人功能。软件EZ-Way®
•自动移动机器人简介。Roland Siegwart和Illah R. Nourbakhsh,麻省理工学院出版社,2004年。•Howie Choset,Kevin Lynch,Seth Hutchinson,George Kantor Wolfram Burgard,Lydia Kavraki和Sebastian Thrun的机器人运动原理,理论算法和实施原理。b。参考书:•机器人运动计划,Jean-Claude Latombe,Kluwer学术出版商,1991年。•概率机器人塞巴斯蒂安·特伦(Sebastian Thrun)。•计划算法,史蒂文(Steven),M,拉瓦勒(Lavalle)。•机器人运动计划Jean Claude Latombe。•移动机器人技术的计算原理,Gregory Dudek和Michael Jenkin。•讲师也可以使用讲义和研究文章。c。目的:本课程侧重于运动计划,感知和推理的概念,这是移动自动驾驶汽车在跨越土地,海洋和空气的动态,非结构化的环境中智能操作所需的。在本课程中,学生将学习如何在非结构化环境中计划机器人的运动,并使用概率方法,这将使他们在不确定性的情况下自我定位并理解周围环境。这些方法将在模拟平台上实现,以关闭透明度循环,以在复杂领域的稳健交付,这些循环在复杂的字段中进行了强大的交付,这些循环通常不是为了容纳机器人而设计的。还将讨论智能机器人系统的案例研究。d。课程结果:完成该模块后,学生将能够:•了解各种运动计划算法并在各种环境中实施。•了解使用统计建模技术(例如高斯过程)的使用,以允许机器人解释传感器数据并理解其周围环境。•了解概率方法如何解决由于现实世界中非确定性而固有的不确定性。•能够适应并应用机器人概念来设计和开发针对不同应用领域的实用机器人解决方案。•了解如何使用Python语言和机器人中间件(例如ROS)在简单的移动机器人上实现概率方法。
Staubli是StäubliInternational AG的商标,在瑞士和其他国家注册。©Stäubli02/2025 -V2。我们保留修改产品规格的权利,恕不另行通知。robot.mkg@staubli.com |照片:SmaphoreStäubli