摘要:移动自主机器人需要准确的地图来实时导航和做出明智的决定。猛击(同时定位和映射)技术允许机器人在移动时构建地图。但是,在复杂或动态的环境中,SLAM可能具有挑战性。本研究提出了一个名为Scramble的移动自主机器人,该机器人根据两个传感器的数据融合使用SLAM:Rplidar A1M8 LIDAR和RGB摄像机。如何使用数据融合来提高映射,轨迹计划和移动自动机器人障碍物检测的准确性?在本文中,我们表明,视觉和深度数据的融合显着提高了映射,轨迹计划和移动自主机器人的障碍物检测的准确性。这项研究通过引入基于数据融合的SLAM方法来帮助自主机器人导航的发展。移动自主机器人用于各种应用程序,包括包装交付,清洁和检查。开发更健壮,更准确的SLAM算法对于在具有挑战性的环境中使用这些机器人至关重要。
宗教住宿政策:华盛顿州法律要求西澳大学制定一项政策,以适应学生缺席或由于信仰或良心的原因或有组织的宗教活动而造成的巨大困难。在宗教住宿政策上提供了UW政策,包括有关如何要求住宿的更多信息。必须在本课程的前两周内使用宗教住宿请求要求住宿。
•从定义上讲,传感器是为感测物理现象而产生输出信号的设备。•通过使用传感器,机器人可以感知环境,不仅涵盖其外观,例如到物体的距离,还可以覆盖其自己的组件(即内部),例如电动机速度。•从使用的角度来看,机器人使用的传感器可以分为两类:本体感受和外部感受传感器。•当前的现成传感器可以根据其作用形式(类似于电气组件)将被动类型分为被动类型。
摘要:在本文中,提出了一种基于扩展状态观察者(ESO)(ESO)的低速汽车移动机器人(CLMR)的轨迹跟踪控制策略,并提出了后台控制控制,以解决轨迹跟踪的问题问题,该问题是由模拟错误和外部干扰物引起的轨迹跟踪准确性降解。首先,将建模误差和外部干扰引入了CLMR的理想运动学模型中,并利用一组输出方程将耦合的,不向导的干扰运动学模型拆分为两个相互独立的子系统。接下来,基于线性ESO估算子系统中的干扰,并通过Lyapunov方法证明了所提出的观察者的收敛性。最后,使用后备控制控制器设计具有干扰补偿的控制器,以完成CLMR的轨迹跟踪任务。仿真和实验结果显示了拟议的控制方案的有效性。
•一种适合您的流量,负载类型和环境的解决方案,•安装的扩展容量,•提供对安装的长期支持的技术团队,•持久,稳健的安装,我们的AGV的平均寿命为45,000小时,•最佳的系统导航控制和本地化技术的最佳系统导航控制和可用性。
摘要 - 当代移动机器人导航架构采用计划算法提供单个最佳遵循路径的构建,在有动态和不确定的环境的情况下存在缺陷。随着环境的更新和机器人的起始状态发生变化,最佳计划通常会围绕离散障碍物进行,这对于遵循强烈有偏见的路径遵循计划的路线而言,这是有问题的。在本文中,我们重新制定了有效自适应状态晶格(EASL)所采用的搜索过程,以利用从观察到的环境中提取的同质类别。这种方法,我们称之为拓扑感知有效自适应状态晶格(TAEASL),使用多个数据结构来控制图中节点的扩展,以在图中提供多个最小成本计划,以在不同的同型类别中提供多个最小成本计划。受到任何时间修复a*的方法的启发,搜索继续进行,直到无法进行进一步的扩展或达到最大搜索时间为止。为了验证Taeasl在现场机器人技术中的效用,它在现实世界中的越野环境数据上进行了测试,该数据由Clearpath Warthog无人接地车辆(UGV)收集,并能够生成多个解决方案。本文以讨论包括高速越野移动机器人导航在混乱的障碍物场中的讨论结束。
摘要 本文探讨了军用机器人技术、安全数据传输和可靠导航系统的交集。导航系统专为迷宫穿越而设计,允许操作员通过 Matlab 函数设置起点和终点。从位于地形上方的摄像头获取的导航数据通过 S-video 输入传输到 PC,启动基于 Matlab 的导航算法。该研究强调网络安全和精确导航,在 LoRa 通信设备中采用加密方法,并在安全机器人操作系统中实现抗量子算法。图像处理算法有助于在迷宫内规划路线,从而全面概述当代技术。为清晰起见,还包括无线机器人导航系统和迷宫加密算法的视觉表示。
摘要。开发能够代替人类执行智力劳动的浇水自主移动机器人是机器人和生物信息学领域的一项紧迫任务。这些机器人可广泛应用于精准农业以节约资源,特别是在最佳植物灌溉领域。在全球城市化的背景下,本研究致力于开发用于微型温室的浇水自主移动机器人。该机器人集成了微电子和微自动化系统。创建了一个配备机械手和计算机视觉系统的原型机器人。开发的灌溉计划和种植方法可以高效利用资源,提高作物产量并降低劳动力成本。这种方法对城市农业具有重要的实用价值。
塔林技术大学机械与工业工程系,Ehitajate Tee 5,19086 Tallinn,Estonia,Estonia于2024年2月7日获得,于2024年3月8日接受,在线获得,2024年4月2日在线获得©2024年作者。这是根据创意共享归因的条款和条件分发的一份开放访问文章4.0国际许可CC(http://creativecommons.org/licenses/4.0)。摘要。数字解决方案对于制造公司在全球市场上提高其生产率,有效性和竞争力而变得越来越重要,这需要低价,高质量和快速交付时间。为了提高生产效率,还必须通过数字化和自动化这些过程来优化生产层中的运输活动。许多公司已经使用或计划使用自动移动机器人(AMR)更有效地管理生产物流。物联网(IoT)的快速开发以及AMR的高级硬件和软件使它们可以在动态环境中执行自主任务,在该环境中,它们可以与其他资源(例如机器和系统)进行交流并独立协调,从而分散了制造过程的决策步骤。分散的决策使制造系统能够动态适应系统状态和环境的变化。这种发展影响了传统的计划和控制方法以及决策过程,但它们还要求软件和嵌入式人工智能(AI)算法更有能力执行这些决策。在这项研究中,我们描述了如何使用3D虚拟工厂概念将具有AI功能的AMR系统整合到食品行业的生产后勤中。本文提出了一种方法,可以根据3D布局的创建和模拟,关键绩效指标(KPI)的监视以及AI在生产计划中主动决策中使用AMR在制造工厂地面运输中的性能。对食品行业的案例研究证明了拟议方法的相关性和可行性。关键字:自动移动机器人,生产物流,物联网,虚拟工厂,人工智能。